
Salutation Architecture Specification V2.0c Part-2

1 06/01//99

Salutation Architecture
Specification (Part-2)

Version 2.0c

June 01, 1999

Salutation Architecture Specification V2.0c Part-2

2 06/01//99

© Copyright The Salutation Consortium Inc. 1996. All rights reserved. Permission to use, or
reproduce this Specification for any purpose without fee is granted. However, both copyright notice
and this permission notice should appear in the reproduced materials. The Salutation Consortium
retains all intellectual property rights in this Specification.

Limitation of Liability

Even though the members of the Salutation Consortium have reviewed this Specification, the
Consortium shall not make any warranty or representation, neither express or implied, with respect
to this Specification, its quality or accuracy and it specifically disclaims the warranties of
merchantability and fitness for a particular purpose.

No representation of third party rights

The Salutation Consortium makes no representation or warranty whatsoever with regard to the
Consortium member or third party ownership, licensing or infringement/non-infringement of
intellectual property rights. Each user of this Specification, whether or not a Consortium member,
should seek the independent advice of legal counsel with regard to any possible violation of third
party rights.

Trademarks

ESC/P (Epson Standard Code for Printers) is a trademark of EPSON Co.

IPDS (Intelligent Printer Data Stream) is a trademark of International Business Machines Corp.

LIPS (LBP Image Processing System) is a trademark of Canon Inc.

Microsoft Windows is a trademark of Microsoft Corporation.

NetWare is a trademark of Novell, Inc.

PAGES (Page Printer Advanced Graphics Escape Set) is a trademark of IBM Japan.

PCL (Printer Control Language) is a trademark of Hewlett-Packard Co.

PJL (Printer Job Language) is a trademark of Hewlett-Packard Co.

PostScript is a trademark of Adobe Systems Inc.

RPDL (Ricoh PDL) is a trademark of Ricoh Corp.

Sun RPC is a trademark of Sun Microsystems, Inc.

SCSA (Signal Computing System Architecture) is a trademark of Dialogic.

TSAPI (Telephony Services API) is a trademark of Novell, Inc.

Versit is a trademark of Apple Computer, Inc., International Business Machines Corp., Lucent
Technologies, and Siemens Rolm Communications Inc.

Salutation Architecture Specification V2.0c Part-2

3 06/01//99

All other product names are trademarks of the respective product owners and/or companies.

Salutation Architecture Specification V2.0c Part-2

4 06/01//99

Preface
The Part-1 of the Salutation Architecture Specification document defines the general framework of
the architecture and the details of the Salutation Manager Protocol.

The Part-2, this document, consists of the following:

�� The Salutation Personality Protocol of Functional Units, i.e. the format and protocol of
messages, is defined in Chapters 1 through 4.

�� The Attributes of each Functional Unit are defined. The Attributes definition is included in
Chapters 2 through 4.

�� Appendix (Chapters 5 and above) contains the definition of values, data types and syntax of
all the defined protocol data units except [Fax Data] Functional Unit.

The Part-3 defines the criteria of the Conformance to the Salutation Architecture Specification.

Revision

Version 2.0 (December 02, 1996)

Public release of the final version 2.0 specification part 2.

Version 2.0a, 2.0b

No change and no release

Version 2.0c (June 01, 1999)

Added some attributes required for implementation and corrected the minor errors of the
specifications.

Salutation Architecture Specification V2.0c Part-2

5 06/01//99

Table of Contents

1. Common Framework ... 11

1.1. Virtual Model of Functional Unit under Salutation Personality Protocol 11
1.2. Message ... 14
1.3. Message Sequence... 15
1.4. Common Messages .. 17

1.4.1. ACK, NACK Messages ... 17
1.4.2. Data Transfer Messages... 18

1.4.2.1. Overview...18
1.4.2.1.1. Data Transfer Mode...18
1.4.2.1.2. Data Location...19
1.4.2.1.3. DataHandle..20
1.4.2.1.4. Data Transfer Message Sequence ..20
1.4.2.1.5. Simplified Data Transfer Message Sequence..22
1.4.2.1.6. Usage of Data Transfer Message Sequence...22

1.4.2.1.6.1. Data Transfer from Client to Functional Unit : Delayed Mode ..23
1.4.2.1.6.2. Data Transfer from Client to Functional Unit : Immediate Mode.....................................24
1.4.2.1.6.3. Data Transfer from Functional Unit to Client ..25
1.4.2.1.6.4. Data Transfer between Functional Units...25

1.4.2.1.7. Skeleton of Data-Transfer-Initiating Command..27
1.4.2.2. Message Description ..28

1.4.2.2.1. RequestDataTransfer...28
1.4.2.2.2. DataBlockDescription ..28
1.4.2.2.3. TransferDataBlock ...29
1.4.2.2.4. RequestNextData...30

1.4.3. Attribute Repository Messages ... 30
1.4.3.1. Overview...30
1.4.3.2. Message Description ..31

1.4.3.2.1. GetPrivateAttribute, GetGlobalAttribute...31
1.4.3.2.2. SetPrivateAttribute...32

1.4.4. Job-Related Messages ... 33
1.4.4.1. Overview...33

1.4.4.1.1. Job-Request-Type Command and Job Entry...33
1.4.4.1.2. Life of Job ..33
1.4.4.1.3. Job Status Notification ...34
1.4.4.1.4. Job Control Attribute ..39
1.4.4.1.5. Job Suspend/Resume..39
1.4.4.1.6. List FU Job Status..39
1.4.4.1.7. Skeleton of Job-Request-Type Command ...40

1.4.4.2. Message Description ..40
1.4.4.2.1. QueryJobStatus ...40
1.4.4.2.2. QueryJobEntryStatus...41
1.4.4.2.3. NotifyJobStatus..42
1.4.4.2.4. NotifyJobEntryStatus ...42
1.4.4.2.5. ChangeJobAttribute ...43
1.4.4.2.6. ChangeJobEntryAttribute...43
1.4.4.2.7. SuspendJob ...44
1.4.4.2.8. SuspendJobEntry...45
1.4.4.2.9. ResumeJob..45
1.4.4.2.10. ResumeJobEntry..46
1.4.4.2.11. CancelJob..46

Salutation Architecture Specification V2.0c Part-2

6 06/01//99

1.4.4.2.12. CancelJobEntry..47
1.4.4.2.13. FreeJobHandle ..47
1.4.4.2.14. StartMonitorJobStatus ...48
1.4.4.2.15. CancelMonitorJobStatus..49
1.4.4.2.16. List FU Job Status type command ...49

1.4.5. Dynamic Status Messages.. 50
1.4.5.1. Overview...50

1.4.5.1.1. Query Dynamic Status ...50
1.4.5.1.2. Event Notification...51

1.4.5.2. Message Description ..53
1.4.5.2.1. QueryDynamicStatus ...53
1.4.5.2.2. SubscribeEvent..54
1.4.5.2.3. NotifyEvent...55
1.4.5.2.4. UnsubscribeEvent..55

1.4.6. Vendor Escape ... 56
1.4.6.1. Overview...56
1.4.6.2. Message Description ..56

1.4.6.2.1. VendorEscape ...56
1.5. Common Attributes ... 57
1.6. National Language Support ... 57
1.7. [Client] Functional Unit .. 59

1.7.1. Overview .. 59
1.7.2. Attributes .. 59
1.7.3. Dynamic Status Parameters ... 60
1.7.4. Messages ... 60

2. Document Systems.. 61

2.1. Document Systems Overview ... 61
2.1.1. Architecture Scope ... 61
2.1.2. Common Characteristics in Document Systems ... 62

2.1.2.1. Document Content Descriptor...62
2.1.2.1.1. Structure and Attributes ...62
2.1.2.1.2. Mode of Content Data Operation ...62
2.1.2.1.3. Definition of Document Data ..63

2.1.2.1.3.1. Document Data Format...64
2.1.2.1.3.2. Document Data Attributes ...65

2.1.2.2. Document Transfer Procedure..69
2.1.2.2.1. Typical Scenarios and Flow Diagrams...69
2.1.2.2.2. Guidelines for Applying Data Transfer Message Sequence ..70
2.1.2.2.3. Requesting Document Transfer between Functional Units..72

2.2. [Print] Functional Unit .. 74
2.1.3. Overview .. 74
2.1.4. List of Functional Unit Attributes ... 75
2.1.5. Message & Protocol.. 76

2.1.5.1. Document Data Transfer Request ..77
2.1.5.1.1. Print Request ...77

2.1.5.2. Attribute Operations..79
2.1.5.3. Dynamic Status Operations ..80
2.1.5.4. Job Related Operations ..82

2.1.5.4.1. Controlling Job execution ..82
2.1.5.4.2. Job Status Notification ...82
2.1.5.4.3. Job Suspend/Resume..82
2.1.5.4.4. Job Status Monitor Start/Cancel ..83
2.1.5.4.5. List FU Job Status..83

Salutation Architecture Specification V2.0c Part-2

7 06/01//99

2.1.5.4.6. Job-Specific Reason Code ..84
2.2. [FAX Data Send] Functional Unit ... 84

2.1.6. Overview .. 84
2.1.7. List of Functional Unit Attributes ... 86
2.1.8. Message & Protocol.. 87

2.1.8.1. Document Data Transfer Request ..87
2.1.8.1.1. Send Fax Data Request...88

2.1.8.2. Attribute Operations..93
2.1.8.3. Dynamic Status Operations ..94
2.1.8.4. Job Related Operations ..95

2.1.8.4.1. Controlling Job execution ..95
2.1.8.4.2. Job Status Notification ...95
2.1.8.4.3. Job Suspend/Resume..96
2.1.8.4.4. Job Status Monitor Start/Cancel ..96
2.1.8.4.5. List FU Job Status..96
2.1.8.4.6. Job-Specific Reason Code ..97

2.2. [DOC Storage] Functional Unit .. 98
2.2.1. Overview .. 98
2.2.2. List of Functional Unit Attributes ... 100
2.2.3. Message & Protocol.. 101

2.2.3.1. Document Control and Data Transfer Request...101
2.2.3.1.1. Document Retrieval Request ...103
2.2.3.1.2. Document Storing Request..105
2.2.3.1.3. Document Deleting Request ..107
2.2.3.1.4. Document Copying Request ..108
2.2.3.1.5. Document Moving Request..109
2.2.3.1.6. Document Descriptions Updating Request ..110
2.2.3.1.7. Folder Creation Request..112
2.2.3.1.8. Folder Description Updating Request..114
2.2.3.1.9. Folder Deletion Request ..115
2.2.3.1.10. Folder Listing Request...116
2.2.3.1.11. Document Listing Request...117

2.2.3.2. Attribute Operations..118
2.2.3.3. Dynamic Status Operations ..119

2.3. [Fax Data] Functional Unit ... 120
2.3.1.1. Overview...120

3. Voice Message Systems.. 121

3.1. Voice Message Systems Overview ... 121
3.1.1. Architecture of Salutation Voice Message Systems .. 122
3.1.2. Application Scenarios ... 123

3.1.2.1. Example-1: Voice Message Distribution ...123
3.1.2.2. Example-2: Integrated Mail Box for Voice Mail, E-Mail, and FAX...124
3.1.2.3. Example-3: Equipment Status Inquiry/Report ...124

3.2. [Voice Message Storage] Functional Unit .. 125
3.2.1. Overview .. 125
3.2.2. Two phase design of [Voice Message Storage] Functional Unit 126
3.2.3. Subset [Voice Message Storage] FU .. 126

3.2.3.1. List of Functional Unit Attributes for Subset [Voice Message Storage] FU.................................126
3.2.3.2. Salutation Personality Message & Protocol for Subset [Voice Message Storage] FU................128

3.2.3.2.1. Request Procedure for Subset [Voice Message Storage] FU..128
3.2.3.2.1.1. Commands of Subset [Voice Message Storage] FU...128

3.2.3.2.2. Subset [Voice Message Storage] FU command details...129
3.2.3.2.2.1. ListFolderContentVM ..129

Salutation Architecture Specification V2.0c Part-2

8 06/01//99

3.2.3.2.2.2. SendVM ..131
3.2.3.2.2.3. PlayVM..135
3.2.3.2.2.4. SynthesizeVM ...137

3.2.3.2.3. Dynamic Status Operations ...141
3.2.3.2.4. Job Related Operations ...142

3.2.3.2.4.1. Controlling Job execution ...142
3.2.3.2.4.2. Job Status Notification ..142
3.2.3.2.4.3. Job Entry Suspend/Resume ...143
3.2.3.2.4.4. Job Status Monitor Start/Cancel ...143
3.2.3.2.4.5. List FU Job Status...143
3.2.3.2.4.6. Job-Specific Reason code ..144

3.2.4. Fullset [Voice Message Storage] FU ... 144
3.2.4.1. List of Functional Unit Attributes for Fullset [Voice Message Storage] FU145
3.2.4.2. Salutation Personality Message & Protocol for Fullset [Voice Message Storage] FU146

3.2.4.2.1. Command Request Procedure for Fullset [Voice Message Storage] FU.............................147
3.2.4.2.1.1. Commands of Fullset [Voice Message Storage] FU ...147
3.2.4.2.1.2. Common commands ...147

3.2.4.2.2. Fullset [Voice Message Storage] FU command details ...148
3.2.4.2.2.1. CreateFolderVM..148
3.2.4.2.2.2. DeleteFolderVM..149
3.2.4.2.2.3. ChangeFolderDescVM..150
3.2.4.2.2.4. StoreVM ..150
3.2.4.2.2.5. RecordVM ...152
3.2.4.2.2.6. RetrieveVM ...153
3.2.4.2.2.7. SetReceiverOptionsVM...154
3.2.4.2.2.8. DeleteVM ..155
3.2.4.2.2.9. CopyVM ..156
3.2.4.2.2.10. ConcatenateVM ..157
3.2.4.2.2.11. SeparateVM ..158
3.2.4.2.2.12. RepositionVM..159
3.2.4.2.2.13. ReviewVM...160

4. Personal Information Systems.. 161

4.1. Personal Information Systems Overview ... 161
4.1.1. Common Characteristics in Personal Information Systems ... 161

4.1.1.1. Concept of Group, Entry and Field ...161
4.1.1.2. Exchange data format ...162
4.1.1.3. Data encoding for coded personal data..162
4.1.1.4. Character set encoding for coded personal data..163
4.1.1.5. Data encoding for binary personal data..163
4.1.1.6. Operations for Group, Entry and Field..163

4.1.1.6.1. Group Operation ..163
4.1.1.6.2. Entry Operation..163
4.1.1.6.3. Field Operation ..164
4.1.1.6.4. Field Data Search Operation ...164

4.1.1.7. List of Messages in Personal Information Systems ..165
4.2. [Address Book] Functional Unit ... 166

4.2.1. Overview .. 166
4.2.2. Examples of operational sequence ... 171

4.2.2.1. To get whole Group data ..171
4.2.2.2. To get searched Entry data by specifying the Entry ...171
4.2.2.3. To get searched Entry data by specifying the position ...172
4.2.2.4. To get Entry data by getting Active Entries Field Data ...172

4.2.3. Field Names of [Address Book] FU ... 172
4.2.4. List of Functional Unit Attribute ... 173

Salutation Architecture Specification V2.0c Part-2

9 06/01//99

4.2.5. Salutation Personality Message & Protocol ... 174
4.2.5.1. ListGroups command..174
4.2.5.2. OpenGroup command...175
4.2.5.3. CloseGroup command ..176
4.2.5.4. CreateGroup command...176
4.2.5.5. DeleteGroup command...177
4.2.5.6. RenameGroup command..178
4.2.5.7. GetGroupData command ..179
4.2.5.8. ListActiveEntries command...180
4.2.5.9. GetEntryData command..181
4.2.5.10. GetActiveEntryData command..182
4.2.5.11. AddEntryData command ...184
4.2.5.12. DeleteEntryData command ...185
4.2.5.13. ReplaceEntryData command ..186
4.2.5.14. MoveEntryData command...187
4.2.5.15. CopyEntryData command ...188
4.2.5.16. SearchFieldData command...189
4.2.5.17. GetActiveEntriesFieldData command ...191

4.3. [Schedule] Functional Unit... 193
4.3.1. Overview .. 193

5. ASN.1 Tag... 195

5.1. Common ... 195
5.2. Document Systems ... 196
5.3. Voice Message Systems ... 197
5.4. Personal Information Systems... 197

6. Data Type Definition .. 198

6.1. Service Description Record... 198
6.2. Salutation Personality Protocol .. 200

6.2.1. Common... 200
6.2.2. Document Systems... 206

6.2.2.1. [Print] Functional Unit ...210
6.2.2.2. [FAX Data Send] Functional Unit ..216
6.2.2.3. [DOC Storage] Functional Unit ...219

6.2.3. Voice Message Systems... 221
6.2.3.1. [Voice Message Storage] Functional Unit...221

6.2.4. Personal Information Systems .. 224
6.2.4.1. [Address Book] Functional Unit ..224

7. Message.. 228

7.1. Message Header... 228
7.2. Common ... 228

7.2.1. ACK, NACK .. 228
7.2.2. Data Transfer ... 228
7.2.3. Attribute Repository .. 230
7.2.4. Job-Related .. 231
7.2.5. Dynamic Status .. 238
7.2.6. Vendor Escape ... 240

7.3. Document Systems ... 240
7.3.1. [Print] Functional Unit ... 240
7.3.2. [FAX Data Send] Functional Unit .. 242
7.3.3. [DOC Storage] Functional Unit.. 245

Salutation Architecture Specification V2.0c Part-2

10 06/01//99

7.4. Voice Message Systems ... 251
7.4.1. [Voice Message Storage] Functional Unit ... 251

7.5. Personal Information Systems... 254
7.5.1. [Address Book] Functional Unit ... 254

8. Functional Unit ID .. 263

9. Attribute & Dynamic Status ID... 264

9.1. Range of Number Assignments... 264
9.2. Common ... 264
9.3. [Client] Functional Unit .. 264
9.4. Document Systems ... 265

9.4.1. [Print] Functional Unit ... 265
9.4.1.1. Capability and Command Attribute ...265
9.4.1.2. Dynamic Status Parameter ...267

9.4.2. [DOC Storage] Functional Unit.. 268
9.4.2.1. Capability and Command Attribute ...268
9.4.2.2. Dynamic Status Parameter ...269

9.4.3. [FAX Data Send] Functional Unit .. 269
9.4.3.1. Capability and Command Attribute ...269
9.4.3.2. Dynamic Status Parameter ...271

9.4.4. [Fax Data] Functional Unit .. 271
9.5. Voice Message Systems ... 271

9.5.1. [Voice Message Storage] Functional Unit ... 271
9.5.1.1. Capability Attribute..271
9.5.1.2. Dynamic Status Parameter ...272

9.6. Personal Information Systems... 273
9.6.1. [Address Book] Functional Unit ... 273

9.6.1.1. Capability Attribute..273

10. Basic Encoding Rule (BER) ... 274

11. References.. 275

Salutation Architecture Specification V2.0c Part-2

11 06/01//99

1. Common Framework
One of the characteristics of the Salutation Architecture is the provision of an common framework
for service request commands and protocols which is independent of the type of service and data
format. The common framework provides the following advantages:

�� Easy to learn interface specifications

�� Easy to implement coordinated functions

�� Easy to expand architecture (easy to add new services)

This chapter describes the characteristics of Salutation Personality Protocol that are common
across Functional Units.

1.1. Virtual Model of Functional Unit under Salutation Personality
Protocol
A Functional Unit exchanges messages with a client, which is either a Salutation client application
or another Functional Unit, through a Service Session. When a Service Session is opened by
Open Service, the protocol to be used in the session is specified by the Personality Protocol ID
parameter in the Open Service request. If the Salutation Personality Protocol is specified at Open
Service, messages exchanged between the client application and the Functional Unit or between
the two Functional Units in the session follow the definition of this part-2 of the architecture
specification document.

The following figure shows the virtual model of a Functional Unit under the Salutation Personality
Protocol.

Salutation Architecture Specification V2.0c Part-2

12 06/01//99

Message Processor

Functional Unit (under Salutation Personality Protocol)

Attribute
Repository

Message Flow
Control/Data Flow

From Client/FU

MessageMessage

To Client/FU

Salutation Manager

Immediate
Message
Processor

Scheduler

Queue for
Job-Request
Commands

Job-Request
Command
Processor

Global
Attributes

Private
Attributes

Data
Spool

Capability
Attributes

Dynamic
Status

Parameters

Event
Monitor

�� Capability Attributes

 The Capability Attributes describe the detail of services the Functional Unit can provide.
When the Functional Unit registers its capability to the Salutation Manager, it gives the
Salutation Manager a Functional Unit Description Record that contains the Capability
Attributes. The values of Capability Attributes are static and do not change. A client may query
the values of Capability Attributes by issuing a Query Capability.

�� Dynamic Status Parameters

 Each Dynamic Status Parameter describes an aspect of the current Functional Unit status.
The values of Dynamic Status Parameters are dynamic and change. A client may query the
current value of a particular Dynamic Status Parameter by sending a QueryDynamicStatus
command.

�� Event Monitor

 A client may request the Functional Unit to notify the client of any changes of a particular
Dynamic Status Parameter. Making such a request is called "subscribing to an event". The
Event Monitor monitors the values of subscribed Dynamic Status Parameters, and generates
an "event" when the value changes. The "event" is notified to the client by a NotifyEvent
message.

�� Message Processor

The Message Processor receives all the messages for the Functional Unit. It processes
message by message, and if necessary, builds a message to be sent back to the client.

Salutation Architecture Specification V2.0c Part-2

13 06/01//99

It is also notified of the initiation and termination of Service Sessions (Open Service ~ Close
Service), and performs session-related housekeeping tasks as required.

Depending on the received messages, the Message Processor operates on the Attribute
Repository.

Some messages that take relatively long time to process are not executed immediately. For
example, if a job-request-type command (see "Job-Related Messages" section on page 33) is
received, the Message Processor performs the following tasks:

1) Creates a job instance

2) Assigns a JobHandle

3) Builds a response to return the JobHandle to the client. It is sent to the client either at
this step or at the end of the next step depending on the received command.

4) If the job-request-type command indicates that associated data item(s) must be obtained
immediately, the Message Processor initiates Data Transfer Message Sequence (see
“Data Transfer Messages” section on page 18) to get the data item(s). (Note that data
transfer occurs either when the job-request-type command is received as described
here, or when the job-request-type command is actually executed, depending on the
command or its parameters.)

5) Enqueues the job-request-type command and, if present, the associated data item(s) in
the Job Queue and the Data Spool respectively. If necessary, default attribute values are
assigned to the command from the attributes in the Attribute Repository at this stage.
See the description of Attribute Repository below for the detail.

The queued commands will be processed by the Queued Job-Request Command Processor
in turn. The Scheduler determines which queued command is to be processed next, by
inspecting the queued commands. Some Functional Units do not require, or allow optional
implementation of the Queue and the Data Spool capability.

�� Attribute Repository

 An attribute in the Attribute Repository is a parameter which controls a way services are done
by the Functional Unit. It is sometimes called "Command Attribute" to discriminate it from a
Capability Attribute. The specification of each Functional Unit defines all the attributes
associated with the Functional Unit.

 The Attribute Repository contains the following two types of attributes.

�� Global Attribute

 A single image of the Global Attributes is shared by all the clients of the Functional Unit.

 Global Attributes are read only.

 The value of each Global Attribute is implementation dependent.

 A typical use of Global Attribute is to set default parameter values for the equipment by
the administrator.

�� Private Attribute

Private Attributes are private to a client, and not shared by the other clients. A separate
image of the Private Attributes is associated with each client of the Functional Unit.

Salutation Architecture Specification V2.0c Part-2

14 06/01//99

Private Attributes are settable (read/write).

Initially, there is no Private Attribute in the Attribute Repository.

A typical use of Private Attribute is to set default parameter values that are applied to
subsequent commands.

Private Attributes values are valid only until the current Service Session (Open Service ~
Close Service) is terminated.

The proper use of Global Attribute and Private Attribute can provide a flexible way of
specifying an attribute value, as follows:

1) The attribute value specified in the command is used, if present.

2) Otherwise, the attribute value specified in the Private Attribute is used, if present.

3) Otherwise, the attribute value specified in the Global Attribute is used. (If the attribute is
not defined as a Global Attribute, the architecture-defined default value is used. An
example is the “printCopyCount” attribute of the [Print] Functional Unit.)

In the cases of 2) or 3), the default attribute value is assigned from the Private Attribute or the
Global Attribute respectively to each command when the command is received by the
Functional Unit. It is NOT that the value of the Private/Global Attribute is used at the time the
command is executed. Therefore, in the following example, the COMMAND uses the value
"aaa" for XYZ attribute.

Client Server

SetPrivateAttribute({XYZ="aaa"}) =>

<= ACK(NULL)

COMMAND(XYZ attribute is omitted) =>

The server enqueues the COMMAND.

:

SetPrivateAttribute({XYZ="bbb"}) =>

<= ACK(NULL)

:

The server dequeues the COMMAND and execute it.
(XYZ="aaa" is used.)

1.2. Message
The Functional Unit receives a command from a client application or another Functional Unit
(called the client hereafter), and sends a response to the client. In some cases, the Functional Unit
sends a command to the client which returns a response. In the rest of this document, a message
is defined as either a command or a response.

Salutation Architecture Specification V2.0c Part-2

15 06/01//99

There are common commands and responses, which are commonly used across the Functional
Units, and there are Functional Unit specific commands used in the Functional Unit. What kind of
common commands and responses are supported, and what kind of Functional Unit specific
commands are defined for the Functional Unit is described in each chapter of the Functional Unit.
Mandatory support or optional support by the Functional Unit is also defined in each description of
the Functional Unit. If commands are categorized mandatory support, Functional Unit must support
these commands and recognize them for further handling, however support of optional commands
depends on the Functional Unit implementation. The Functional Unit will inform a client what
Optional support commands are supported by the supportedCommand attribute in the Capability
Attribute.

The command consists of command itself and parameters to control the services in the Functional
Unit. Some parameters are defined as optional, therefore Functional Unit does not need to support
all of the parameters defined in the specification. The command sender can set the optional
parameters if the Functional Unit supports them.

1.3. Message Sequence
A message sequence is the sequence of two or more related messages exchanged between the
client and the Functional Unit alternately. Some message sequences are initiated by the client, and
the other message sequences are initiated by the Functional Unit.

A complete message sequence consists of one command and one response which is either ACK
or NACK except for data transfer message sequence which is described in "Data Transfer
Messages" section on page 18.

A message sequence is initiated by a command. Every message has a parameter called
MsgSeqID in its header. The MsgSeqID field is INTEGER data type. It is used as follows:

�� When the client application or Functional Unit that has initiated the service session by sending
an Open Service request is going to start a new message sequence, it assigns a positive
value to the MsgSeqID field of the initiating command. All the rest of commands and
responses in this message sequence have the same value in their MsgSeqID field.

 The MsgSeqID value is increased by one for each new message sequence. It wraps back to 1
after a sufficiently large number, e.g. 32767 (‘7FFF’ in hexadecimal).

�� When the Functional Unit that has accepted the Open Service request is going to start a new
message sequence, the same rule is followed except that a negative value is assigned in the
MsgSeqID field.

 The MsgSeqID value is decreased by one for each new message sequence. It wraps back to -
1 after a sufficiently small number, e.g. -32768 (‘8000’ in hexadecimal).

 A message sequence is terminated by and only by ACK, NACK, or the closing of the service
session.

 When the client or the Functional Unit (FU) initiates a new message sequence, it must follow the
following rules:

�� The client/FU must not initiate a new message sequence while another message sequence it
has initiated is not terminated.

Salutation Architecture Specification V2.0c Part-2

16 06/01//99

 Client Server

 -- start of message sequence-a --

 COMMAND (MsgSeqID=1) =>

 <= COMMAND (MsgSeqID=1)

 COMMAND (MsgSeqID=1) =>

 <= ACK or NACK (MsgSeqID=1)

 -- end of message sequence-a --

 -- start of message sequence-b --

 COMMAND (MsgSeqID=2) =>

 <= COMMAND (MsgSeqID=2)

 ACK or NACK (MsgSeqID=2)=>

 -- end of message sequence-b --

 -- start of message sequence-c --

 COMMAND (MsgSeqID=3) =>

 <= ACK or NACK (MsgSeqID=3)

 -- end of message sequence-c --

 :

�� The client/FU may initiate a new message sequence even if there is an on-going message
sequence provided that the on-going message sequence has been initiated not by the
client/FU but by the other end of the service session.

Client Server

-- start of message sequence-a --

COMMAND (MsgSeqID=1) =>

-- start of message sequence-b --

<= COMMAND (MsgSeqID=-1)

ACK or NACK (MsgSeqID=-1)=>

-- end of message sequence-b --

<= ACK or NACK (MsgSeqID=1)

-- end of message sequence-a --

One whole Transfer Data packet contains one and only one message under the Salutation
Personality Protocol.

Salutation Architecture Specification V2.0c Part-2

17 06/01//99

1.4. Common Messages
The following messages are commonly used across Functional Units under the Salutation
Personality Protocol as a part of the common framework. The specification of each Functional Unit
dictates which message is actually supported and in what context it is used.

1.4.1. ACK, NACK Messages
These are the simplest forms of common response against various commands. ACK positively
acknowledges the previous command, and NACK negatively acknowledges it.

ACK takes zero or more parameters, of which data type or meaning depend on the associated
command. In the rest of this document, the following convention is used to describe parameters of
ACK message.

�� ACK(NULL) : ACK takes no parameter

�� ACK(type) : ACK takes one parameter whose data type is type.

�� ACK(type-1, type-2) : ACK takes two parameters. The data type of the first parameter is
 type-1, that of the second is type-2.

�� (and so on)

NACK takes one mandatory parameter value, ReturnCode, that describes why the previous
command is rejected or failed to be processed. NACK may take an optional parameter to describe
the detail or additional information regarding the reason of rejection/failure. This optional
parameter is mainly intended for implementation convenience (e.g. for debug or diagnostics), and
may be ignored by the receiver of NACK response. The existence and content of this optional
parameter is entirely left to each implementation.

How ACK/NACK is used is described in the description of each associated command.

ASN.1 Syntax Definition

ACK ::= [APPLICATION tagACK] SEQUENCE
{

COMPONENTS OF MsgHeader,
parameter1 [0] ANY OPTIONAL,
parameter2 [1] ANY OPTIONAL,
parameter3 [2] ANY OPTIONAL
-- : :
-- The number and data type of parameters depend on the associated command, and are defined
-- by the specification of each associated command.

}

Salutation Architecture Specification V2.0c Part-2

18 06/01//99

NACK ::= [APPLICATION tagNACK] SEQUENCE
{

COMPONENTS OF MsgHeader,
returnCode [0] ReturnCode,
descriptor [1] OCTET STRING OPTIONAL

-- Additional information for the reason of rejection.
-- Debug/diagnostics purpose. May be ignored.

}

1.4.2. Data Transfer Messages

1.4.2.1. Overview
"Data" represents a meaningful unit of data sequence, such as compound document, file, etc.,
which is treated in a certain consistent manner by client/server applications with the Salutation
Personality Protocol.

Source
Data Location

Functional Unit

Destination
Data Location

Data

Data

Client
COMMAND

A data transfer is initiated by a COMMAND that is sent by a client application or another Functional
Unit (the client) to a Functional Unit. Depending on the COMMAND, the data is transferred into the
Functional Unit and/or the data is transferred out of the Functional Unit.

The COMMAND specifies:

�� how the "data" should be processed, and

�� where the "data" to be processed is (source data location) and/or where the processed "data"
should be (destination data location)

Some examples of such COMMAND are Print (data transfer into FU), RetrieveDoc (data transfer
out of FU), and commands for data format conversion (data transfer into and out of FU).

1.4.2.1.1. Data Transfer Mode

When the COMMAND initiates data transfer into the Functional Unit, the following two Data
Transfer Modes are defined. If the COMMAND is a job-request-type (refer to “Job-Related
Messages” section on page 33), the COMMAND explicitly or implicitly specifies the mode to be
used. If the COMMAND is not a job-request-type, data transfer is always in immediate mode.

�� Immediate Mode

Salutation Architecture Specification V2.0c Part-2

19 06/01//99

 Data transfer is initiated immediately after the COMMAND is received by the Functional Unit
(before the COMMAND is queued in the job queue if it is a job-request-type.)

�� Delayed Mode

Data transfer is initiated when the COMMAND is executed by the Functional Unit, after the
COMMAND is dequeued from the job queue.

The delayed-mode data transfer is useful when the Functional Unit does not have a large storage
to pool data.

1.4.2.1.2. Data Location

The source/destination data location is specified as one of the following:

�� Client

 The source/destination data location is the client itself that is issuing the COMMAND to initiate
the data transfer.

�� Export Pool

 This choice may be used only as the destination data location.

 When it is specified, the “data” is not actually transferred but is prepared for another
Functional Unit to access.

�� Functional Unit

 This choice may be used only as the source data location.

 The data is transferred from the specified Functional Unit (data-source FU). The data-source
FU is identified by the Functional Unit Handle of the data-source FU and the SLM-ID of the
SLM with which the data-source FU is registered.

�� URL

It is optional to support this choice. The Functional Unit indicates in its capability attribute whether
or not it supports URL-based data location specification.

The data is transferred from/to a file system designated by the specified Uniform Resource Locator
(URL). Only the URL with either “ftp” or “file” scheme is allowed. If the “ftp” scheme is used,
the Functional Unit accesses the specified file under the File Transfer Protocol (FTP). If the
“file” scheme is used, the Functional Unit accesses the specified file in an implementation
dependent way.

Unlike the other three choices, if the URL-based data location is specified, it is not possible to
transfer the description (format) of the “data” together with the “data” content or to retain the
data block boundaries (described in “Data Transfer Message Sequence” section below). The
URL-based data location should not be used when the data format is not obvious from the file
name or when the data block boundaries need to be maintained.

The rest of “Data Transfer Messages” section defines the framework for the data transfer between
a client application and a Functional Unit, or between a Functional Unit and another Functional
Unit, and is not applicable to data transfer to/from the URL-specified data location.

Salutation Architecture Specification V2.0c Part-2

20 06/01//99

1.4.2.1.3. DataHandle

DataHandle is used to identify the "data" to be transferred. DataHandle is always assigned by the
sender of the data. Data-sending FU implementation must generate a sufficiently long and random
value for a DataHandle.

A DataHandle is valid only for one Data Transfer Message Sequence. After the completion of the
Data Transfer Message Sequence, the sender invalidates the DataHandle. If the same or different
receiver attempts to request another data transfer using the same DataHandle, the sender rejects
it by "Unknown DataHandle" error.

When a client application requests a Functional Unit (data-source FU) to send data to another
Functional Unit (data-destination FU), the client application sets the data destination parameter in
the COMMAND to the data-source FU as the Export Pool. The data-source FU generates a
DataHandle and returns it to the client application. Such data handle is called Export DataHandle.
The client application then sends another COMMAND with the Export DataHandle to the data-
destination FU. The data-destination FU sends a RequestDataTransfer command (described in the
next section) with the Export DataHandle to the data-source FU to initiate receiving the data.

The Export DataHandle is not invalidated even if the client application closes the service session
after it receives the Export DataHandle from the data-source FU. There may be cases that the
data source FU has assigned an Export DataHandle, but no receiver will have requested a data
transfer with the Export DataHandle. Each implementation may define when unused Export
DataHandles are invalidated, for example, once a day, or limiting the number of pending handles to
twenty.

1.4.2.1.4. Data Transfer Message Sequence

A Data Transfer Message Sequence is used to transfer the data between the source/destination
data location and the Functional Unit. It consists of the following messages:

�� RequestDataTransfer

�� DataBlockDescription

�� TransferDataBlock

�� RequestNextData

�� ACK

�� NACK

In this section, a "data" is defined as the whole of data to be transferred in one complete Data
Transfer Message Sequence.

A "data" consists of one or more data blocks. One data block consists of one or more data block
segments. One data block segment is transferred by one TransferDataBlock message. The
message has two flags (Begin Data Block and End Data Block) to indicate data block boundaries
and an additional flag (Last Segment) to indicate the last segment of the last data block.

Salutation Architecture Specification V2.0c Part-2

21 06/01//99

data block segment

data block

“data”

It is allowed to mix different format (or any other optional attributes) of data blocks in a "data".
(However, one data block shall not contain mixed formats). DataBlockDescription message is used
to specify the format of subsequent data blocks. It may be omitted If the format of data block is
known to the receiver, for example, because the receiver and the sender have agreed on the
format by a separate message in advance, or because the specification of Functional Unit has
defined the default format.

A "data" is transferred in one data block unless it contains mixed formats or the specification of
each Functional Unit specifies when a "data" should be divided into multiple data blocks. For
example, when a document in bi-level image stream format is printed by a [Print] Functional Unit
under the Salutation Personality Protocol, the document “data” is transferred to the FU in multiple
data blocks, each data block corresponding to a page in the document.

On the other hand, it is an implementation matter how to divide each data block into multiple data
block segments. For example, if a particular SLM implementation imposes the maximum size for
the application data parameter of slmTransferData() SLM-API, the sending application may have to
split each data block so that each data block segment fits in the limited size.

The following is the simplest form of Data Transfer Message Sequence.

Sender Receiver

TransferDataBlock(Begin, End, Last) =>

<= ACK

The following is more complex example of Data Transfer Message Sequence. In this example, the
"data" consists of three data blocks, the first two in one format, and the third in another format. The
second data block is further divided into two data block segments.

Salutation Architecture Specification V2.0c Part-2

22 06/01//99

Sender Receiver

<= RequestDataTransfer(DataHandle)

data format for the first & second data block

DataBlockDescription =>

<= RequestNextData

the first data block

TransferDataBlock(Begin, End) =>

<= RequestNextData

the second data block

TransferDataBlock(Begin) =>

<= RequestNextData

TransferDataBlock(End) =>

<= RequestNextData

data format for the third data block

DataBlockDescription =>

<= RequestNextData

the third data block

TransferDataBlock(Begin, End, Last) =>

<= ACK

The same MsgSeqID value is used in all messages in a Data Transfer Message Sequence.

1.4.2.1.5. Simplified Data Transfer Message Sequence

When a COMMAND initiates the transfer of only one "data" from the client to the Functional
Unit under immediate mode, the Functional Unit omits the ACK response to the COMMAND and
immediately sends a RequestDataTransfer message.

When a COMMAND initiates the transfer of only one "data" from the Functional Unit to the
client, the Functional Unit omits both ACK response and RequestDataTransfer message.

In both cases, DataHandle is not used.

The same MsgSeqID value is used in all messages from the initiating COMMAND through the
completion of the data transfer in a simplified data transfer message sequence.

1.4.2.1.6. Usage of Data Transfer Message Sequence

The following examples show typical uses of Data Transfer Message Sequence. In the examples,
the shortest possible Data Transfer Message Sequence is shown only for the sake of simplicity,
however the "data" may actually consist of multiple data blocks, each data block consisting of
multiple data block segments.

Salutation Architecture Specification V2.0c Part-2

23 06/01//99

1.4.2.1.6.1. Data Transfer from Client to Functional Unit : Delayed Mode

The client issues a COMMAND with a DataHandle that identifies the client’s data to be transferred
to the Functional Unit. The COMMAND may be queued and not processed immediately by the
Functional Unit. The Functional Unit requests the client to transfer the data when the COMMAND
is dequeued and executed.

Client Server

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(DataHandle, ...) =>

<= ACK(...)

--- Message Sequence End (MsgSeqID=n1)---

COMMAND may be queued.

--- Message Sequence Start (MsgSeqID=n2)---

<= RequestDataTransfer(DataHandle)

TransferDataBlock(Begin, End, Last) =>

<= ACK(NULL)

--- Message Sequence End (MsgSeqID=n2)---

If more than one data item is to be transferred, the Functional Unit initiates a separate Data
Transfer Message Sequence for each data item, as follows.

Salutation Architecture Specification V2.0c Part-2

24 06/01//99

Client Server

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(DataHandle-1, DataHandle-2, ...) =>

<= ACK(...)

--- Message Sequence End (MsgSeqID=n1)---

COMMAND may be queued.

--- Message Sequence Start (MsgSeqID=n2)---

<= RequestDataTransfer(DataHandle-1)

TransferDataBlock(Begin, End, Last) =>

<= ACK(NULL)

--- Message Sequence End (MsgSeqID=n2)---

--- Message Sequence Start (MsgSeqID=n3)---

<= RequestDataTransfer(DataHandle-2)

TransferDataBlock(Begin, End, Last) =>

<= ACK(NULL)

--- Message Sequence End (MsgSeqID=n3)---

1.4.2.1.6.2. Data Transfer from Client to Functional Unit : Immediate Mode

If more than one data item is to be transferred, the flow is the same as above except that data
items are transferred before the COMMAND is queued.

If only one data item is to be transferred, simplified data transfer message sequence is used as
follows:

Client Server

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(...) =>

<= RequestDataTransfer()

TransferDataBlock(Begin, End, Last) =>

<= ACK(...)

--- Message Sequence End (MsgSeqID=n1)---

Salutation Architecture Specification V2.0c Part-2

25 06/01//99

1.4.2.1.6.3. Data Transfer from Functional Unit to Client

If more than one data item is to be transferred, the client application initiates a separate Data
Transfer Message Sequence for each data item, as follows.

Client Server

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(...) =>

<= ACK(DataHandle-1, DataHandle-2, ...)

--- Message Sequence End (MsgSeqID=n1)---

--- Message Sequence Start (MsgSeqID=n2)---

RequestDataTransfer(DataHandle-1) =>

<= TransferDataBlock(Begin, End, Last)

ACK(NULL) =>

--- Message Sequence End (MsgSeqID=n2)---

--- Message Sequence Start (MsgSeqID=n3)---

RequestDataTransfer(DataHandle-2) =>

<= TransferDataBlock(Begin, End, Last)

ACK(NULL) =>

--- Message Sequence End (MsgSeqID=n3)---

If only one data item is to be transferred, simplified data transfer message sequence is used as
follows:

Client Server

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(...) =>

<= TransferDataBlock(Begin, End, Last)

ACK(NULL) =>

--- Message Sequence End (MsgSeqID=n1)---

1.4.2.1.6.4. Data Transfer between Functional Units

Examples so far have shown data transfers between the client and the Functional Unit. A client
application can also request a data transfer to occur between two Functional Units.

Salutation Architecture Specification V2.0c Part-2

26 06/01//99

Functional Unit

COMMAND

Data Transfer

Data Transfer between Client and Functional Unit

Data Transfer between Functional Units

COMMAND

COMMAND

Data Transfer

Client

Client

Functional Unit
(Data Source)

Functional Unit
(Data Destination)

The procedure for a data transfer between Functional Units is as follows:

1) The client establishes a service session with the data-source Functional Unit.

2) The client sends a COMMAND to the data-source FU specifying that the destination of data
transfer is "Export Pool" (not the client). When the Export Pool is selected as the destination,
the data is not actually transferred but is just prepared for another Functional Unit to access.
The data-source FU assigns an Export DataHandle for the data item to be transferred, and
returns it to the client. (The session between the client and the data-source FU may be closed
hereafter.)

3) The client establishes a service session with the data-destination Functional Unit.

4) The client sends a COMMAND to the data-destination FU to give the Export DataHandle
together with AbsoluteFunctionalUnitHandle. AbsoluteFunctionalUnitHandle contains the
following information of the data-source FU:

�� The SLM-ID of the SLM with which the data-source FU is registered

�� The Functional Unit Handle of the data-source FU

(The session between the client and the data-destination FU may be closed hereafter.)

5) The data-destination Functional Unit establishes a service session with the data-source
Functional Unit.

6) The data-destination FU initiates the data transfer message sequence by sending a
RequestDataTransfer message with the Export DataHandle.

7) The data-destination Functional Unit closes the session with the data-source Functional Unit
after the data transfer is completed.

Salutation Architecture Specification V2.0c Part-2

27 06/01//99

The following figure shows how messages are actually exchanged.

Client Data-Source FU

Client establishes a session with data-source Functional Unit.

--- Message Sequence Start (MsgSeqID=n1)---

COMMAND(DataDestination=ExportPool, ...) =>

<= ACK(DataHandle)

--- Message Sequence End (MsgSeqID=n1)---

Client Data-Destination FU

Client establishes a session with data-destination Functional Unit.

--- Message Sequence Start (MsgSeqID=n2)---

COMMAND(DataSource=AbsoluteFunctionalUnitHandle, DataHandle, ...) =>

<= ACK(...)

--- Message Sequence End (MsgSeqID=n2)---

Data-Destination FU Data-Source FU

Session is established between the Functional Units.

--- Message Sequence Start (MsgSeqID=n3)---

RequestDataTransfer(DataHandle) =>

<= TransferDataBlock(Begin, End, Last)

ACK(NULL) =>

--- Message Sequence End (MsgSeqID=n3)---

1.4.2.1.7. Skeleton of Data-Transfer-Initiating Command

Some of the parameters shown in the following skeleton may be defined as optional or not included
in each data-transfer-initiating COMMAND definition.

Salutation Architecture Specification V2.0c Part-2

28 06/01//99

COMMAND ::= [APPLICATION tagCOMMAND] SEQUENCE
{

COMPONENTS OF MsgHeader,
: (other parameters)

modeOfDataTransfer [] DataTransferMode,
dataSource [] DataLocation DEFAULT client,
dataHandle [] DataHandle,
dataDestination [] DataLocation DEFAULT client,

: (other parameters)
}

1.4.2.2. Message Description

1.4.2.2.1. RequestDataTransfer

The receiver of the data initiates the Data Transfer Message Sequence by this message. It
identifies the "data" to be transferred by DataHandle parameter. DataHandle must have been
assigned by the sender and known to the receiver by a separate message in advance, as
described in the previous "Usage of Data Transfer Message Sequence" section on page 22.

The DataHandle parameter in RequestDataTransfer message is omitted in simplified data transfer
message sequence.

Response

One of the following is returned in response to this message:

�� DataBlockDescription, TransferDataBlock

 The sender has accepted the request and started the data transfer.

�� NACK

The sender has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure. NACK terminates the message sequence.

ASN.1 Syntax Definition

RequestDataTransfer ::= [APPLICATION tagRequestDataTransfer] SEQUENCE
{

COMPONENTS OF MsgHeader,
dataHandle [0] DataHandle OPTIONAL

}

1.4.2.2.2. DataBlockDescription

This message tells the receiver of the format and/or other attributes of subsequent data blocks in
this Data Transfer Message Sequence.

The specification of each Functional Unit dictates whether this message is used or not, when this
message is used, and what parameter this message takes.

Response

One of the following is returned in response to this message:

Salutation Architecture Specification V2.0c Part-2

29 06/01//99

�� RequestNextData

 The receiver has processed the message successfully and is ready to receive next message.

�� NACK

The receiver has failed to process the message. NACK includes a ReturnCode which
indicates the reason of the failure. NACK terminates the message sequence.

ASN.1 Syntax Definition

DataBlockDescription ::= [APPLICATION tagDataBlockDescription] SEQUENCE
{

COMPONENTS OF MsgHeader,
dataDescriptor [0] CHOICE
{

document [0] DocumentDataDescriptor,
file [1] FileData

}
}

1.4.2.2.3. TransferDataBlock

This message is used by the sender to transfer a data block segment to the receiver. A separate
TransferDataBlock message is used for each data block segment.

It has flags to indicate the first and last data block segment in a data block. If a data block consists
of only one data block segment, both flags are set and entire data block is transferred by one
TransferDataBlock message.

This message also has another flag to indicate the last data block segment of the last data block.
For example, if the entire “data” is transferred by one TransferDataBlock message, all the three
flags are set.

Note: “TransferDataBlock” message should not be confused with “Transfer Data” RPC message of
the Salutation Manager Protocol.

Response

One of the following is returned in response to this message:

�� RequestNextData

 The receiver has processed the message successfully and is ready to receive next message.

�� ACK

 This response is returned only if the "last data block segment" flag is set in the preceding
TransferDataBlock message, and the receiver has successfully processed the message. This
is the last message of a successful Data Transfer Message Sequence.

 Unless otherwise specified by the specification of each Functional Unit, ACK takes no
parameter.

�� NACK

The receiver has failed to process the message. NACK includes a ReturnCode which
indicates the reason of the failure. NACK terminates the message sequence.

Salutation Architecture Specification V2.0c Part-2

30 06/01//99

ASN.1 Syntax Definition

TransferDataBlock ::= [APPLICATION tagTransferDataBlock] SEQUENCE
{

COMPONENTS OF MsgHeader,
beginDataBlock [0] BOOLEAN,
endDataBlock [1] BOOLEAN,
lastSegment [2] BOOLEAN, -- TRUE in the last data block segment of the

-- last data block of “data”
dataBlockBody [3] OCTET STRING

}

1.4.2.2.4. RequestNextData

The receiver issues this message when it has successfully processed the previous message from
the sender, and when it is ready to receive next message.

Response

One of the following is returned in response to this message:

�� DataBlockDescription, TransferDataBlock

 The sender is continuing the data transfer.

�� NACK

The sender has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure. NACK terminates the message sequence.

ASN.1 Syntax Definition

RequestNextData ::= [APPLICATION tagRequestNextData] SEQUENCE
{

COMPONENTS OF MsgHeader
}

1.4.3. Attribute Repository Messages

1.4.3.1. Overview
The following messages are defined to read/set values of attributes in the Attribute Repository.
Each message may include more than one attribute.

�� GetPrivateAttribute

�� GetGlobalAttribute

�� SetPrivateAttribute

All of these messages are not mandatory support for the Functional Unit. Supported message tags
by an FU will be set in the supportedCommand attribute in the capability attributes.

The normal flow of these commands and responses are as follows:

Salutation Architecture Specification V2.0c Part-2

31 06/01//99

Client Server

To read attribute values:

GetPrivateAttribute(SET OF AttributeID) =>
or

GetGlobalAttribute(SET OF AttributeID) =>

<= ACK(AttributeList)

To set attribute values:

SetPrivateAttribute(AttributeList) =>

<= ACK(NULL)

The initial version of the architecture has not defined SetGlobalAttribute message.

1.4.3.2. Message Description

1.4.3.2.1. GetPrivateAttribute, GetGlobalAttribute

The client sends a GetPrivateAttribute or a GetGlobalAttribute message to read the value of one or
more Private Attributes or Global Attributes respectively. The message has a set of Attribute IDs
as its parameter.

The server returns the attribute ID-value pairs of only those attributes that exist in the Attribute
Repository. The attributes that do not exist, either because they are not supported or because their
values have not been set by SetPrivateAttribute message, are not included in the response.

Response

One of the following is returned in response to this message:

�� ACK(AttributeList)

 The server is returning the valid ID-value pairs of queried attributes.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

GetPrivateAttribute ::= [APPLICATION tagGetPrivateAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeIdList [0] SET OF AttributeID

}

Salutation Architecture Specification V2.0c Part-2

32 06/01//99

GetGlobalAttribute ::= [APPLICATION tagGetGlobalAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeIdList [0] SET OF AttributeID

}

AttributeList ::= SET OF SEQUENCE
{

attributeId [0] AttributeID,
attributeValue [1] ANY -- Type is defined by each attribute.

}

1.4.3.2.2. SetPrivateAttribute

The client sends a SetPrivateAttribute message to set the value of one or more Private Attributes
respectively. The message has a set of Attribute ID-value pairs as its parameter.

If any of the attributes in the message is unknown or not supported by the server, the entire
message is rejected and no attribute value is changed.

If the value parameter is omitted, the corresponding attribute in the Attribute Repository is deleted.
The command is accepted even if the attribute to be removed does not exist in the Attribute
Repository provided that the attribute is supported.

Response

One of the following is returned in response to this message:

�� ACK(NULL)

 The server has successfully set attribute values.

�� NACK(ReturnCode)

The server has failed to set attribute values. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

SetPrivateAttribute ::= [APPLICATION tagSetPrivateAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeList [0] SET OF SEQUENCE
{

attributeId [0] AttributeID,
attributeValue [1] ANY OPTIONAL

-- Type is defined by each attribute.
-- If omitted, attribute is deleted.

}
}

Salutation Architecture Specification V2.0c Part-2

33 06/01//99

1.4.4. Job-Related Messages

1.4.4.1. Overview

1.4.4.1.1. Job-Request-Type Command and Job Entry

For a command that may take time to be processed, the server assigns and returns a JobHandle
to the client in ACK response as follows, when the command is received but before the command
is executed.

Client Server

COMMAND =>

<= ACK(JobHandle)

(The COMMAND is enqueued in the job queue.)

:

(The COMMAND is dequeued from the job queue and executed.)

This type of command is called Job-Request-Type command. The client may send a CancelJob
message to the server to cancel the associated job-request-type command. The server deletes the
command if it is in a queue and not processed yet, or optionally abort the command execution if it
is being processed. See the description of CancelJob message for more detail.

Client Server

CancelJob(JobHandle) =>

<= ACK(NULL)

Certain job-request-type commands are structured such that a job consists of more than one task.
For example, a command to send a document to multiple destinations by FAX consists of multiple
tasks. Each task sends a document to one named destination. Each task in a job-request-type
command is called a Job Entry. The client assigns a unique integer value, called JobEntryID, to
each Job Entry. Note that JobHandle is assigned by the server but JobEntryID is assigned by the
client. JobEntryID can be used, for example, to know the result of each Job Entry execution
individually later.

Job or Job Entry related messages are not mandatory support for the Functional Unit. Supported
message tags by an FU will be set in supportedCommand attribute in the capability attributes.

1.4.4.1.2. Life of Job

JobHandle, JobEntryID, and the status of job execution have one of the following life. The server
must retain these values, and the client may refer to JobHandle and JobEntryID in messages, only
during their life.

�� Job (default)

The life terminates after the server sends the result of job execution to the client at the
completion of the job, or if there is no notification to be sent, the life terminates at the

Salutation Architecture Specification V2.0c Part-2

34 06/01//99

completion of job execution. The server must retain JobEntryID and status of all job entries
until all job entries are executed.

 Note that the life is NOT terminated by the termination of current Service Session (Open
Service ~ Close Service).

�� Session

 The life terminates at the end of current Service Session (Open Service ~ Close Service). It
may be terminated also by FreeJobHandle message from the client.

 If the job is still queued in the job queue or it is being executed when the current session is
terminated, the job is purged from the job queue (together with any spooled data, if any) or
the job execution is aborted respectively.

 The server is desirable to retain JobEntryID and status of all job entries until current session is
terminated or JobHandle is freed.

�� Persistent

 The life is not terminated by the end of current Service Session or by the completion of the job
execution. The life is terminated either:

�� by FreeJobHandle message from the client, or

�� by any implementation defined way. For example, a Functional Unit may be implemented
such that it retains only the last twenty job results, a new one always replacing the oldest
one.

 The server is desirable to retain JobEntryID and status of all job entries persistent.

The Life parameter is included in the job-request-type command to explicitly specify the life of
JobHandle, JobEntryID, and job status. If the Life parameter is omitted, the life of "Job" is
assumed.

In any case, the life is terminated if the job is canceled by the client before or during job execution.

1.4.4.1.3. Job Status Notification

A job or job entry is in one of the following state:

�� Queued : execution has not begun

�� Started : execution is in progress

�� Suspended : execution is temporarily suspended

�� Completed : execution has successfully completed

�� Error : execution has completed in error

�� WaitingForScheduledTime : waiting for the scheduled execution start time

�� Canceled : queued job or job entry is canceled

�� Aborted : execution is aborted

Salutation Architecture Specification V2.0c Part-2

35 06/01//99

 Following figure shows the relationship among job status and how job status is transited to another
status.

Job Request

Queued

Waiting For
Scheduled
 Time

Suspended

Started

END

Completed
or Aborted
or Error

Completed
or Aborted
or Error

Started Queued

 Resumed

Suspended

Resumed

 Canceled

 Canceled

 Canceled

 Canceled

 Canceled
Suspended

Suspended

Aborted

Queued

 Fig 1 Job status transition table

 Note

 JobStatusCode includes both job status and the transaction. Only NotifyJobStatus uses the
transaction part and the others, e.g. JobStatusNotificationMode/FUJobList, use the job status
part. Above figure shows the job-status transaction table, a job status name in an oval and a
transaction name along an arrow.

 If the job consists of multiple job entries, how job entry status transition will affect to the job
status will be described in each Functional Unit part.

 The client can either solicit the server to know the current status of a job or job entries, or request
the server to notify the client at certain status changes of a job or job entries.

 When the client solicits the server for the status of a job, it sends a QueryJobStatus message to
the server.

Salutation Architecture Specification V2.0c Part-2

36 06/01//99

 Client Server

 QueryJobStatus(JobHandle) =>

 <= ACK(JobStatusCode, ...)

 When the client solicits the server for the status of a specific job entry or all the job entries of a job,
it sends a QueryJobEntryStatus message to the server.

 Client Server

 QueryJobEntryStatus(JobHandle, JobEntryID) =>

 <= ACK(JobStatusCode, ...)

 When the client requests the server to notify certain status changes of a job or the job entries of a
job:

�� a JobStatusNotificationMode parameter is included in the job-request-type command, or

�� the client sends StartMonitorJobStatus command which includes a JobStatusNotificationMode
parameter. (The clients sends CancelMonitorJobStatus command when it no longer needs to
be notified of job status changes.)

 The JobStatusNotificationMode parameter specifies:

�� what types of status changes should be notified, and

�� whether the notification is requested for the job on the whole, or the notification is requested
for each job entry of the job.

Salutation Architecture Specification V2.0c Part-2

37 06/01//99

When the JobStatusNotificationMode indicates the notification is for the job on the whole:

Client Server

COMMAND(..., JobStatusNotificationMode, ...) =>

<= ACK(JobHandle)

:

A notification is sent when the job execution is

- started,

- suspended,

- resumed,

- completed successfully,

- completed in error,

- canceled, or

- aborted

as requested:

<= NotifyJobStatus(JobHandle, JobStatusCode, ...)

ACK(NULL) =>

:

<= NotifyJobStatus(JobHandle, JobStatusCode, ...)

ACK(NULL) =>

:

Salutation Architecture Specification V2.0c Part-2

38 06/01//99

When the JobStatusNotificationMode indicates the notification is for each job entry:

Client Server

COMMAND(..., JobStatusNotificationMode, ...) =>

<= ACK(JobHandle)

:

A notification is sent when each job entry execution is

- started,

- suspended,

- resumed,

- completed successfully,

- completed in error,

- canceled, or

- aborted

as requested:

<= NotifyJobEntryStatus(JobHandle, JobEntryID, JobStatusCode, ...)

ACK(NULL) =>

<= NotifyJobEntryStatus(JobHandle, JobEntryID, JobStatusCode, ...)

ACK(NULL) =>

:

<= NotifyJobEntryStatus(JobHandle, JobEntryID, JobStatusCode, ...)

ACK(NULL) =>

<= NotifyJobEntryStatus(JobHandle, JobEntryID, JobStatusCode, ...)

ACK(NULL) =>

:

If the JobStatusNotificationMode parameter is not included in the job-request-type command, no
notification is made unless the client issues a StartMonitorJobStatus command.

If the life of “job” or “persistent” is specified in the job-request-type command, the client application
may close the service session after it receives the ACK for the command even if the job execution
has not completed (or even begun). If any job status notifications are requested, the client
application that is to receive the notifications must have registered itself with the Salutation
Manager (SLM) as a [Client] Functional Unit.

By default, the job status notification is sent to the client application that submitted the job.
Because the Functional Unit Handle of the job-requesting [Client] FU and the SLM-ID of the SLM

Salutation Architecture Specification V2.0c Part-2

39 06/01//99

with which the [Client] FU is registered are passed to the server FU at the Open Service request,
the server FU will be able to send an Open Service request to the [Client] FU to send job status
notifications if no service session exists.

It is possible for the job-requesting client application to specify that the job status notifications are
sent to another [Client] FU. The notification-receiving application must have registered itself as a
[Client] FU. The job-requesting client application specifies the Functional Unit Handle of the [Client]
FU and the SLM-ID of the SLM with which the [Client] FU is registered in the job-requesting
command as “NotificationScheme” parameter.

If the "check interval" parameter is specified in the job-request-type command, the Functional Unit
has to request the Salutation Manager (SLM), by calling slmStartAvailabilityCheck(), to periodically
check if the [Client] FU to receive the job status notifications is still available. If this parameter is
not specified, no Availability Check is performed.

1.4.4.1.4. Job Control Attribute

Job-request-type commands sometimes have parameters called "Job Control Attributes". An
example of a job control attribute is "Job Priority" attribute.

A particular job control attribute is associated with either the whole job or a job entry.

The following commands may be used to change the value of a job control attribute of a queued
job:

�� ChangeJobAttribute

�� ChangeJobEntryAttribute

The specification of each command dictates which job control attributes support these commands.

1.4.4.1.5. Job Suspend/Resume

The following commands are defined to suspend the execution of queued or currently executing
job or job entry:

�� SuspendJob

�� SuspendJobEntry

 The following commands are defined to resume the suspended job or job entry:

�� ResumeJob

�� ResumeJobEntry

The specification of each job-request-type command dictates whether these commands are
supported or not.

1.4.4.1.6. List FU Job Status

List FU Job Status type command is defined for the client to get the list of current job status in the
Functional Unit. The supported command for each Functional Unit is defined in each chapter.

Salutation Architecture Specification V2.0c Part-2

40 06/01//99

The example flow of the command and its response is as follows:

Client Server

ListFUJob(...) =>

<= TransferDataBlock(FUJobList)

ACK(NULL) =>

1.4.4.1.7. Skeleton of Job-Request-Type Command

Not all the parameters shown in the following skeleton of the job-request-type command are
defined in each job-request-type command.

COMMAND ::= [APPLICATION tagCOMMAND] SEQUENCE
{

COMPONENTS OF MsgHeader,
: (other parameters)

life [] Life DEFAULT job,
jobStatusNotificationMode [] JobStatusNotificationMode OPTIONAL,

-- If omitted, no notification is made.
notificationScheme [] NotificationScheme OPTIONAL,

-- Omitted unless the job status notifications are to be
-- sent to a [Client] FU other than the client that is
-- sending this command

checkInterval [] INTEGER OPTIONAL
-- Interval (in seconds) for the FU-side SLM to periodically
-- check the availability of the [Client] FU to receive the job
-- status notification
-- If omitted, the Availability Check is not performed.

jobControlAttributes [] ...
: (other parameters)

}

1.4.4.2. Message Description

1.4.4.2.1. QueryJobStatus

The client sends this message to the server to query the status of a job.

It may be sent after the client receives a JobHandle in the response to a job-request-type
command the client has issued, and before the life of JobHandle, JobEntryID, and job status is
terminated.

Response

One of the following is returned in response to this message:

�� ACK(JobStatusCode, ReasonCode)

 JobStatusCode indicates the status of the job. If JobStatusCode is either "error" or
"suspended", ReasonCode is included and indicates the reason of the suspension or error.

Salutation Architecture Specification V2.0c Part-2

41 06/01//99

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

QueryJobStatus ::= [APPLICATION tagQueryJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

1.4.4.2.2. QueryJobEntryStatus

The client sends this message to the server to query the status of a specific job entry or all the job
entries of a job.

It may be sent after the client receives a JobHandle in the response to a job-request-type
command the client has issued, and before the life of JobHandle, JobEntryID, and job status is
terminated.

Response

One of the following is returned in response to this message:

�� ACK(JobStatusCode, ReasonCode) or ACK(JobEntriesStatus)

 If the status of a specific job entry is queried, ACK includes JobStatusCode and optional
ReasonCode. JobStatusCode indicates the status of the job entry. If JobStatusCode is either
"error" or "suspended", ReasonCode is included and indicates the reason of the suspension
or error.

 If the status of all the job entries is queried, ACK includes JobEntriesStatus.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

QueryJobEntryStatus ::= [APPLICATION tagQueryJobEntryStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID OPTIONAL

-- If omitted, the status of all the job entries is requested.
}

Salutation Architecture Specification V2.0c Part-2

42 06/01//99

JobEntriesStatus ::= SET OF SEQUENCE
{

jobEntryId [0] JobEntryID,
jobEntryStatusCode [1] JobStatusCode,
jobEntryReasonCode [2] ReasonCode OPTIONAL

-- present only if jobEntryStatusCode=suspended or error
}

1.4.4.2.3. NotifyJobStatus

The server sends NotifyJobStatus to the client to tell the job status change such as the completion
of the job execution. The client has to indicate which types of job status changes it wishes to be
notified by the JobStatusNotificationMode parameter of job-request-type command.

Response

One of the following is returned by the client in response to NotifyJobStatus:

�� ACK(NULL)

 The client has received the notification successfully.

�� NACK(ReturnCode)

The client has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

NotifyJobStatus ::= [APPLICATION tagNotifyJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
reasonCode [2] ReasonCode OPTIONAL

-- present only if jobStatusCode=suspended or error
}

1.4.4.2.4. NotifyJobEntryStatus

The server sends NotifyJobEntryStatus to the client to tell the job entry status change such as the
completion of the job entry execution. The client has to indicate which types of job entry status
changes it wishes to be notified by the job status notification mode parameter of job-request-type
command.

Response

One of the following is returned by the client in response to NotifyJobEntryStatus:

�� ACK(NULL)

 The client has received the notification successfully.

�� NACK(ReturnCode)

The client has failed to process the NotifyJobStatus. NACK includes a ReturnCode which
indicates the reason of the failure.

Salutation Architecture Specification V2.0c Part-2

43 06/01//99

ASN.1 Syntax Definition

NotifyJobEntryStatus ::= [APPLICATION tagNotifyJobEntryStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
jobStatusCode [2] JobStatusCode,
reasonCode [3] ReasonCode OPTIONAL

-- present only if jobStatusCode=suspended or error
}

1.4.4.2.5. ChangeJobAttribute

The client sends this message to change the value of a job control attribute parameter of a queued
job-request-type command.

If the execution of the specified job has already been completed, the command is rejected by
NACK (ReturnCode = rcJobAlreadyExecuted) response. (ReturnCode = rcInvalidJobHandle is
used if the life of JobHandle has already expired.)

If the specified job is being executed, it is implementation dependent whether:

�� the command is rejected by NACK (ReturnCode = rcJobAlreadyExecuted) response, or

�� the command is accepted and the job is executed under the updated attribute value.

 Response

 One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has updated the job control attribute value successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

ChangeJobAttribute ::= [APPLICATION tagChangeJobAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
attributeId [1] AttributeID,
attributeValue [2] ANY

}

1.4.4.2.6. ChangeJobEntryAttribute

The client sends this message to change the value of a job control attribute parameter of a job
entry of a queued job-request-type command.

Salutation Architecture Specification V2.0c Part-2

44 06/01//99

If the execution of the specified job entry has already been completed, the command is rejected by
NACK (ReturnCode = rcJobAlreadyExecuted) response. (ReturnCode = rcInvalidJobHandle is
used if the life of JobHandle has already expired.)

If the specified job entry is being executed or if the specified job is being executed but the
execution of the specified job entry has not begun, it is implementation dependent whether:

�� the command is rejected by NACK (ReturnCode = rcJobAlreadyExecuted) response, or

�� the command is accepted and the job entry is executed under the updated attribute value.

 Response

 One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has updated the job control attribute value successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

ChangeJobEntryAttribute ::= [APPLICATION tagChangeJobEntryAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
attributeId [2] AttributeID,
attributeValue [3] ANY

}

1.4.4.2.7. SuspendJob

The client sends this message to suspend the execution of a queued or currently executing job-
request-type command.

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has suspended the job successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

45 06/01//99

SuspendJob ::= [APPLICATION tagSuspendJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

1.4.4.2.8. SuspendJobEntry

The client sends this message to suspend the execution of a queued or currently executing job
entry of a job-request-type command.

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has suspended the job entry successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

SuspendJobEntry ::= [APPLICATION tagSuspendJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID

}

1.4.4.2.9. ResumeJob

The client sends this message to resume a suspended job-request-type command.

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has processed the message successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

ResumeJob ::= [APPLICATION tagResumeJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

Salutation Architecture Specification V2.0c Part-2

46 06/01//99

1.4.4.2.10. ResumeJobEntry

The client sends this message to resume a suspended job entry of a job-request-type command.

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has processed the message successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

ResumeJobEntry ::= [APPLICATION tagResumeJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID

}

1.4.4.2.11. CancelJob

The client sends this message to cancel a job-request-command it has issued before.

It may be sent after the client receives a JobHandle in the response to a job-request-type
command the client has issued, and before the life of JobHandle is terminated.

This message includes "abort" flag. If the flag is set, the job is aborted even if the job is being
executed. If the flag is NOT set and the server has already started the execution of the job,
CancelJob message is rejected by NACK (ReturnCode = rcJobAlreadyExecuted) response.

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has canceled the job successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

47 06/01//99

CancelJob ::= [APPLICATION tagCancelJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
abort [1] BOOLEAN

-- if TRUE, job is canceled either queued or being executed
-- if FALSE, job is canceled only if execution has not started

}

1.4.4.2.12. CancelJobEntry

The client sends this message to cancel a job entry in a job-request-command it has issued
before.

It may be sent after the client receives a JobHandle in the response to a job-request-type
command the client has issued, and before the life of JobHandle is terminated.

This message includes "abort" flag. If the flag is set, the job entry is aborted even if the job entry is
being executed. If the flag is NOT set and the server has already started the execution of the job
entry, CancelJobEntry message is rejected by NACK (ReturnCode = rcJobAlreadyExecuted)
response. The support of this feature is optional. If the server implementation does not support it,
CancelJobEntry message with abort=TRUE received while the job entry is being executed is
rejected by NACK (ReturnCode = rcJobAlreadyExecuted).

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has canceled the job entry successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

CancelJobEntry ::= [APPLICATION tagCancelJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
abort [2] BOOLEAN

-- if TRUE, job is canceled either queued or being executed
-- if FALSE, job is canceled only if execution has not started

}

1.4.4.2.13. FreeJobHandle

The client sends this message to tell the server that the JobHandle, JobEntryID, and job result no
longer need to be retained.

Salutation Architecture Specification V2.0c Part-2

48 06/01//99

It may be sent after the client receives a JobHandle in the response to a job-request-type
command the client has issued, and before the life of JobHandle is terminated.

However, if the specified job execution has not been started or completed either successfully or
unsuccessfully, the command is rejected by NACK (ReturnCode = rcJobNotCompleted).

In practice, this message is used by the client after the client first solicits the result of job execution
by QueryJob(Entry)Status message when the life of job is "Persistent".

Response

One of the following is returned by the server in response to this message:

�� ACK(NULL)

 The server has processed the command successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

FreeJobHandle ::= [APPLICATION tagFreeJobHandle] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

1.4.4.2.14. StartMonitorJobStatus

The client sends StartMonitorJobStatus to the server to be notified of the job status change such
as the completion of the job execution. The client has to indicate which types of job status changes
it wishes to be notified with JobStatusNotificationMode parameter. The StartMonitorJobStatus
resets the FU’s jobStatusNotificationMode. For example, the StartMonitorJobStatus’s
JobStatusNotificationMode overrides the job-request-type command’s jobStatusNotificationMode if
any.

Response

One of the following is returned by the server in response to StartMonitorJobStatus :

�� ACK(NULL)

 The server has received the command successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

49 06/01//99

StartMonitorJobStatus ::= [APPLICATION tagStartMonitorJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobStatusNotificationMode [1] JobStatusNotificationMode

}

1.4.4.2.15. CancelMonitorJobStatus

The client sends CancelMonitorJobStatus to the server to cancel the job-status-monitoring.

Response

One of the following is returned by the server in response to CancelMonitorJobStatus :

�� ACK(NULL)

 The server has received the command successfully.

�� NACK(ReturnCode)

The server has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

CancelMonitorJobStatus ::= [APPLICATION tagCancelMonitorJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

1.4.4.2.16. List FU Job Status type command

The client sends a List FU Job Status type message to get the list of current job in the Functional
Unit. The list is transferred from the Functional Unit to the client by using a Data Transfer message
Sequence.

The list of job is transferred as ‘data’ consisting of one data block which may be split into multiple
data block segments. Each data block segment is FUJobDescription (The format of each
FUJobDescription is defined in each FU.) which is defined as SET OF these Descriptions. For
example, if Functional Unit has 900 jobs, the Description of the first 300 jobs may be sent in the
first data block segment, next 300 jobs in the second data block segment, and last 300 jobs in the
last data block segment. Although each data block segment contains only a part of the whole folder
set, the receiving application can decode each data block segment without waiting for the next
data block segment.

If the specified parameter is unknown or not supported by the FU, the command is rejected by
NACK.

Response

One of the following is returned in response to this message:

�� ACK(ANY)

Salutation Architecture Specification V2.0c Part-2

50 06/01//99

 The client has successfully processed the received data.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

Refer to each Functional Unit description.

1.4.5. Dynamic Status Messages

1.4.5.1. Overview
A Dynamic Status Parameter describes an aspect of the current Functional Unit status. There are
three ways for the client to access dynamic status parameters:

�� Query Dynamic Status

 The client may query the current value of a particular dynamic status parameter.

�� Event Notification

 The client may request the Functional Unit to notify the client of any changes of the value of a
particular dynamic status parameter.

�� List Job Status

The client may request the Functional Unit to get the list current job status.

The supported Dynamic Status ID is defined in the Capability Attribute.

1.4.5.1.1. Query Dynamic Status

QueryDynamicStatus command is defined for the client to get the current value of a particular
Dynamic Status Parameter which describes an aspect of the Functional Unit status.

The flow of the command and its response is as follows:

Client Server

when successful:

QueryDynamicStatus(DynamicStatusID) =>

<= ACK(value)

when unsuccessful:

QueryDynamicStatus(DynamicStatusID) =>

<= NACK(ReturnCode)

Salutation Architecture Specification V2.0c Part-2

51 06/01//99

1.4.5.1.2. Event Notification

The client first subscribes to one or more dynamic status parameters by sending a SubscribeEvent
command to the Functional Unit.

When the value of a subscribed dynamic status parameter changes, the Functional Unit notifies
the client of the new value of the dynamic status parameter by sending a NotifyEvent message.

The client sends an UnsubscribeEvent command to the Functional Unit if it no longer wishes to be
notified of the changes of the dynamic status parameter value(s).

The normal flow of messages is as follows:

Client Server

first, client subscribes to dynamic status parameter(s):

SubscribeEvent(list of DynamicStatusIDs, ...) =>

<= ACK(SubscriptionHandle)

:

whenever the value of a subscribed dynamic status parameter changes:

<= NotifyEvent(SubscriptionHandle, DynamicStatusID, value)

ACK(NULL) =>

:

<= NotifyEvent(SubscriptionHandle, DynamicStatusID, value)

ACK(NULL) =>

:

when the client no longer wishes to be notified of changes:

UnsubscribeEvent(SubscriptionHandle) =>

<= ACK(NULL)

It may take a very long time before the client is notified of an event after it subscribes to the event.
If the client intends to terminate the service session after it sends a SubscribeEvent command, the
“life” parameter in the SubscribeEvent command must be set to “persistent”. While such a long-
term subscription is effective, the availability of the client and the Functional Unit must be
periodically checked using the Salutation Manager’s Availability Check function so that:

�� the client can be assured that the Functional Unit has not forgotten (e.g. by crush or re-start)
that the client is still waiting for the notification of the event, and

�� the Functional Unit can be assured that the client is still up and running (e.g. not crushed) to
receive a notification of the event.

If the “life” parameter in a SubscribeEvent command is set to “session”, the subscription is
automatically canceled when the service session is terminated. In this case, the “checkInterval”
parameter of the SubscribeEvent command must be omitted, and Availability Check is not
performed.

Salutation Architecture Specification V2.0c Part-2

52 06/01//99

Please refer to the relevant sections in the part-1 of the specification for the detail of Salutation
Manager Protocol and the Salutation API definitions for the Availability Check. This section
describes the flow of operations for the client and the Functional Unit to initiate and end the
Availability Check.

When a client application intends to send a SubscribeEvent command with “life = persistent”
parameter, it must have registered itself as a [Client] Functional Unit with the Salutation Manager
(SLM). In the following description, the [Client] Functional Unit sending a SubscribeEvent is called
"Client-FU", and the Functional Unit to which the SubscribeEvent command is sent is called
"Server-FU".

1) Before the Client-FU sends the SubscribeEvent to the Server-FU, it calls
slmStartAvailabilityCheck() with the following parameters:

�� AvailabilityCheckMode = Receiver

�� SLM-ID of the SLM with which the Server-FU is registered

�� FU Handle of the Server-FU

�� Check Interval

�� FU Handle of the Client-FU (i.e. its own FU Handle)

�� The entry point of the Client-FU's call-back function which will be called by the SLM when
the Server-FU is found to be unavailable.

slmStartAvailabilityCheck() returns a AvailabilityCheckHandle to the Client-FU. The Client-
FU must retain the AvailabilityCheckHandle associated with this SubscribeEvent request, so
that when it cancels the SubscribeEvent request later, it can also cancel this Availability Check
request.

2) Then, the Client-FU sends the SubscribeEvent to the Server-FU including the following
parameters:

�� Check Interval (the same value as that is specified in slmStartAvailabilityCheck())

3) The Server-FU processes the received SubscribeEvent, and returns a response back to the
Client-FU.

If the response is negative (i.e. NACK), the Client-FU must call
slmCancelAvailabilityCheck() with the AvailabilityCheckHandle which was given by the
previous slmStartAvailabilityCheck(). Otherwise, proceed to the following.

If the response is positive (i.e. ACK), the Server-FU calls slmStartAvailabilityCheck() with
the following parameters:

�� AvailabilityCheckMode = Sender

�� SLM-ID of the SLM with which the Client-FU is registered

�� FU Handle of the Client-FU

�� Check Interval : copied from the SubscribeEvent

�� FU Handle of the Server-FU (i.e. its own FU Handle)

�� The entry point of the Server-FU's call-back function which will be called by the SLM
when the Client-FU is found to be unavailable.

Salutation Architecture Specification V2.0c Part-2

53 06/01//99

slmStartAvailabilityCheck() returns a AvailabilityCheckHandle to the Server-FU. The Server-
FU must retain the AvailabilityCheckHandle associated with this SubscribeEvent request, so
that when the SubscribeEvent request is canceled, it can also cancel this Availability Check
request.

4) The Availability Check is performed between the client-side SLM and the server-side SLM
(which can be the same SLM). As long as the Client-FU and the Server-FU are available, the
call-back function of the Client-FU or the Server-FU is not called.

If the Server-FU is found to be unavailable, the call-back function of the Client-FU is called.
The Client-FU must call slmCancelAvailabilityCheck() with the SubscriptionHandle given by
the previous slmStartAvailabilityCheck().

If the Client-FU is found to be unavailable, the call-back function of the Server-FU is called.
The Server-FU must call slmCancelAvailabilityCheck() with the SubscriptionHandle given by
the previous slmStartAvailabilityCheck(). The Server-FU invalidates the event subscription
from the Client-FU.

5) When the Client-FU no longer needs to be notified of the event, it sends an UnsubscribeEvent
command to the Server-FU, and calls slmCancelAvailabilityCheck() with the
AvailabilityCheckHandle which was given by the previous slmStartAvailabilityCheck().

6) When the Server-FU receives the UnsubscribeEvent command from the Client-FU, it calls
slmCancelAvailabilityCheck() with the AvailabilityCheckHandle which was given by the
previous slmStartAvailabilityCheck().

1.4.5.2. Message Description

1.4.5.2.1. QueryDynamicStatus

The client sends a QueryDynamicStatus message to get the current value of a dynamic status
parameter. The message contains a Dynamic Status ID as a parameter.

If the specified dynamic status parameter is unknown or not supported by the FU, the command is
rejected by NACK.

Response

One of the following is returned in response to this message:

�� ACK(ANY)

 The server has successfully processed the command and is returning the value of the
specified dynamic status parameter.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

54 06/01//99

QueryDynamicStatus ::= [APPLICATION tagQueryDynamicStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
dynamicStatusId [0] DynamicStatusID

}

1.4.5.2.2. SubscribeEvent

The client sends a SubscribeEvent message to request the Functional Unit to notify the client of
any changes of the value of particular dynamic status parameter(s).

If any of the specified dynamic status parameters are unknown or not supported by the FU, the
entire command is rejected by NACK.

"Life" parameter indicates whether the subscription is valid only during the current service session
(life = "session") or the subscription should be retained even after the current service session is
terminated (life = "persistent"). “job” shall not be set to the life parameter.

If the life of “persistent” is specified in the command, the client application may close the service
session after it receives the ACK for the command. The client application that is to receive the
event notification must have registered itself with the SLM as a [Client] Functional Unit.

If “life = persistent”, the “checkInterval” parameter must be present. If “life = session”, the
“checkInterval” parameter must be omitted.

The event notification is sent to the client application that submitted the SubscribeEvent command.
Because the Functional Unit Handle of the [Client] FU and the SLM-ID of the SLM with which the
[Client] FU is registered are passed to the server FU at the Open Service request, the server FU
will be able to send an Open Service request to the [Client] FU to send the event notification if no
service session exists.

If "life = persistent” parameter is specified in the SubscribeEvent command, the Functional Unit
has to request the Salutation Manager (SLM), by calling slmStartAvailabilityCheck(), to periodically
check if the [Client] FU to receive the event notification is still available.

Response

One of the following is returned in response to this message:

�� ACK(SubscriptionHandle)

 The server has successfully processed the command and is returning a handle that uniquely
identifies this particular subscription.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

55 06/01//99

SubscribeEvent ::= [APPLICATION tagSubscribeEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
eventList [0] SET OF DynamicStatusID,
life [1] Life,
checkInterval [2] INTEGER OPTIONAL

-- Interval (in seconds) for the FU-side SLM to periodically
-- check the availability of the [Client] FU to receive the job
-- status notification
-- This parameter shall be present if life = persistent.
-- This parameter shall be omitted if life = session.

}

1.4.5.2.3. NotifyEvent

The Functional Unit sends a NotifyEvent message to the client to notify the new value of a dynamic
status parameter that the client has previously subscribed to, when the value has changed.

If the indicated SubscriptionHandle or DynamicStatusID is unknown to the client, the message is
rejected by NACK.

Response

One of the following is returned in response to this message:

�� ACK(NULL)

 The client has successfully accepted the notification.

�� NACK(ReturnCode)

The client has failed to process the message. NACK includes a ReturnCode which indicates
the reason of the failure.

ASN.1 Syntax Definition

NotifyEvent ::= [APPLICATION tagNotifyEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
subscriptionHandle [0] SubscriptionHandle,
dynamicStatusId [1] DynamicStatusID,
dynamicStatusValue [2] ANY

}

1.4.5.2.4. UnsubscribeEvent

The client sends an UnsubscribeEvent message to the Functional Unit when it no longer wishes to
be notified of any changes of the value of subscribed dynamic status parameter(s).

If the specified subscription handle is unknown to the FU, the command is rejected by NACK.

Response

One of the following is returned in response to this message:

�� ACK(NULL)

Salutation Architecture Specification V2.0c Part-2

56 06/01//99

 The server has successfully processed the command and canceled the specified subscription.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

UnsubscribeEvent ::= [APPLICATION tagUnsubscribeEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
subscriptionHandle [0] SubscriptionHandle

}

1.4.6. Vendor Escape

1.4.6.1. Overview
There may be cases that vendor-unique commands and responses are necessary to implement
vendor-unique functions in each Functional Unit. The VendorEscape message may be used to
implement such functions. The Manufacturer, Product, and Version attributes which may be
included in any Functional Unit Description Records help vendor-unique Salutation applications to
determine if and what vendor-unique functions are supported.

1.4.6.2. Message Description

1.4.6.2.1. VendorEscape

The number and data type of parameters in the VendorEscape message and its response are to
be defined by each vendor’s specification, and out of the scope of this document.

VendorEscape is unique to vendors, so, the sender of VendorEscape command should check the
validity of this command prior to issuing it. The sender can know it by examining the Manufacturer,
Product and/or Version in the query capability.

Response

One of the following is returned in response to this message:

�� ACK(...)

 The server has successfully processed the command.

�� NACK(ReturnCode)

The server has failed to process the command. NACK includes a ReturnCode which
indicates the reason of the failure.

ASN.1 Syntax Definition

VendorEscape ::= [APPLICATION tagVendorEscape] SEQUENCE
{

COMPONENTS OF MsgHeader,
parameter [0] ANY

}

Salutation Architecture Specification V2.0c Part-2

57 06/01//99

1.5. Common Attributes
The following table shows the attributes that are mandatory in all the registered Functional Unit
Description Records regardless of the type of Functional Unit.

Capability Attribute Name ID Data Type Compare Function ID

Major version 10 INTEGER intEqualTo

Minor version 11 INTEGER intGreaterThanOrEqualTo

Default coded character set 20 CharSetID intEqualTo

FU name 30 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer name 40 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer product name 41 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer product version 42 DisplayString (SIZE(0..63)) strEqualTo

Physical location 50 DisplayString (SIZE(0..255)) strEqualTo

Contact person name 51 DisplayString (SIZE(0..255)) strEqualTo

Authentication flavors 60 SET OF AuthenticationFlavor setIntDoesContain

Note : Major/minor version attributes indicate the version number of the Salutation Personality
Protocol architecture definition of the Functional Unit. When these two attributes are included in a
requested FUDR, the requested FUDR matches the registered FUDR if the two FUDRs have the
same major version number AND the minor version number of the registered FUDR is greater than
or equal to that of the requested FUDR.

Under the initial version of the Salutation Architecture, the following values must be specified in
any registered FUDRs:

�� Major version = 2

�� Minor version = 0

Additional attributes are defined for each type of Functional Unit. All the defined attributes must be
present in a registered FUDR.

1.6. National Language Support
This section defines how character sets are encoded under the Salutation Architecture. Any other
internationalization considerations are discussed under the specification of each Functional Unit as
required.

The following textual information are subject to the definition in this section.

�� Attribute values of textual data type in the Functional Unit Description Records

�� Parameters of textual data type in commands and responses under the Salutation Personality
Protocol.

�� “Data” of textual data type, e.g. plain text, unless the coded character set is identified by
another method, e.g.

�� the architecture/specification of data format defines its own coded character set

Salutation Architecture Specification V2.0c Part-2

58 06/01//99

identification rule, or

�� coded character set identification rule is defined by the specification of Functional Unit

 For example, versit’s vCard data format has its own coded character set identifier, therefore,
this is outside of the scope of this section’s definition. Refer to the Versit documents listed in
the “References” section on page 275 for the detail of versit’s vCard data format.

 These are called target attributes, parameters and “data” in the following description.

 Note: The architecture only defines the coded character set identification rule for interchange.
Implementations may choose whichever coded character set they like for internal usage.

 DisplayString data type is defined by the architecture as follows. It should be used for any textual
data definition for the target attributes and parameters.

 DisplayString ::= OCTET STRING -- Textual information

 CharSetID data type is defined by the architecture as follows to identify a particular coded
character set.

 CharSetID ::= INTEGER -- Coded character set ID as registered with IANA
 -- (MIB enumeration value is used)

 The value of CharSetID is an integer registered with the Internet Assigned Numbers Authority
(IANA) as MIB enumeration value to identify a coded character set. The IANA’s registry of the
coded character sets can be found at:

 ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

 The architecture recommends implementations to choose coded character sets for interchange
from the following list:

 Coded Character Set Countries IANA-registered
character set name

 Value of
CharSetID

 ISO 8859-1 Latin-1 countries ISO_8859-1:1987 4

 ISO 10646-1 level 3 (Unicode) Countries using double-
byte characters

 ISO-10646-UCS-2 1000

 JIS X0208-1978 (Shift JIS) Japan Shift_JIS 17

 Note: This list may grow based on requirements.

 The following attribute is defined for the Functional Unit Description Record (FUDR):

�� Default Coded Character Set

Data Type : CharSetID

All the target attributes of DisplayString data type in the FUDR are encoded in the coded character
set specified by this attribute.

Salutation Architecture Specification V2.0c Part-2

59 06/01//99

1.7. [Client] Functional Unit

1.7.1. Overview
In general, Functional Units are abstraction of server applications and provide services to client
applications or other Functional Units. However, a special Functional Unit, called [Client]
Functional Unit, is defined to represent certain client applications rather than server applications.

The [Client] Functional Unit is semantically different from other Functional Units as it represents a
client, not server, application. However, the Salutation Manager treats it just like any other
Functional Units unless otherwise stated. For example, [Client] Functional Units will be included in
a Query Capability reply message with all the other Functional Units if a Query Capability call
message with the Wild Functional Unit ID is received.

A client application must register its capability as a [Client] Functional Unit to the Salutation
Manager only if it expects to receive an Open Service request from another Functional Unit. A
client application may receive an Open Service request from another Functional Unit under the
following cases:

�� The client application sends a job-request-type command to a Functional Unit, which requests
any of the following, and then terminates the session.

�� The life of the job is "job" or "persistent", and the command requested to notify the client
of certain job (entry) status change(s).

�� The command requested a delayed-mode data transfer to and/or from the client.

�� The client application sends a SubscribeEvent command to a Functional Unit with "life =
persistent" parameter, and then terminates the session.

In these cases, the Functional Unit sends an Open Service to the client before sending a
NotifyJob(Entry)Status, RequestDataTransfer, or NotifyEvent message. It sends a Close Service
after the message sequence is completed.

The “Personality Protocol ID” parameter of Open Service request to the [Client] FU shall be one
(1).

1.7.2. Attributes
The following capability attribute is defined for the [Client] Functional Unit.

�� User ID

 It contains the User ID of the user associated with the client application. The network login
name is recommended to be used as the User ID if applicable, however implementation may
choose to use another scheme, for example, the full name of the user, or even the user class
name such as “general” or ”administrator”.

 It shall be NULL if no user is associated with the client application.

 Refer to the “User Identification and Authentication” section in the part-1 of the architecture
specification for the detail of this attribute.

 When a client application registers the [Client] Functional Unit Description Record to the Salutation
Manager, the following common capability attributes are also included to describe the client
application.

Salutation Architecture Specification V2.0c Part-2

60 06/01//99

�� Major version

�� Minor version

�� Default coded character set

�� FU name

�� Manufacturer name

�� Manufacturer product name

�� Manufacturer product version

�� Physical location

�� Contact person name

�� Authentication flavors

No command attribute for the attribute repository is defined for the [Client] Functional Unit.

1.7.3. Dynamic Status Parameters
No dynamic status parameter is defined for the [Client] Functional Unit.

1.7.4. Messages
The [Client] Functional Unit may receive the following messages.

�� NotifyJobStatus

�� NotifyJobEntryStatus

�� NotifyEvent

�� RequestDataTransfer

�� RequestNextData

 The [Client] Functional Unit may send the following messages:

�� ACK

�� NACK

�� DataBlockDescription

�� TransferDataBlock

Salutation Architecture Specification V2.0c Part-2

61 06/01//99

2. Document Systems

2.1. Document Systems Overview

2.1.1. Architecture Scope
The abstract document system defined in Salutation Architecture (hereafter termed as "Salutation
document systems") provides "on-line" document operational capabilities with the following service
functions.

� capturing document

� manipulating document

� storing document

� delivering document

� printing document

The following figure illustrates a typical configuration of Salutation document systems and outlines
the architecture scope.

Client
(PC)

Server
(Salutation FAX/Copier)

Client
(PC)

Server
(PC w/Fax Modem)

Service Request
"Deliver Doc to
distribution list"

Printing

Delivering Capturing

StoringService Request
mapped on G3

Client
(PC)

Client
(WP)

Service Request
"Print 10 copies of Doc
by tomorrow" Service Request

"Get Doc #3-5 from Mailbox"

Service Request
"Scan Doc to diskette with Index XYZ"

Printer

(Local Protocol)

The following bullets summarize the key requirements and the consideration points in defining the
architecture for Salutation document systems.

� Server (service provider) is considered as a common resource with some sort of intelligence,
rather than a host controlled peripheral.

� Supports both batch type service request and interactive type service request. Service
request can either be queued or be executed on-the-fly.

� Service requests may be issued from multiple clients at the same time.

� Service requests are defined independent of transports. Recommended mapping on to G3
facsimile protocol needs to be described.

� Functional split between clients and servers will be flexibly configured, to some extent, in
accordance with the implementation level of each service.

Salutation Architecture Specification V2.0c Part-2

62 06/01//99

The architecture focuses on defining the Functional Units which provide the following services
within Salutation document systems.

� Document printing services : termed as [Print] Functional Unit

� Document delivering services via fax protocol : termed as [Fax Data Send] Functional Unit

� Document and data storing services : termed as [DOC Storage] Functional Unit

2.1.2. Common Characteristics in Document Systems
Abstract Functional Units in Salutation document systems will share many of the characteristics in
common. This section describes the following common characteristics.

� Document content descriptors (or attributes), and the default interchange format

� Document transfer procedure between client and server applications

2.1.2.1. Document Content Descriptor

2.1.2.1.1. Structure and Attributes

The term "Content Data" represents a meaningful unit of data sequence, such as compound
document, file, etc., which is treated in a certain consistent manner by client/server applications
with Salutation Personality Protocol.

Content data is constructed of a single or multiple data elements of diverse characteristics. Here,
each "data element" is considered to be defined as a simple subset of content data type, in such a
way as "(printable/visible) document" content data, "voice" content data, "animation" content data,
etc.

DOCUMENT VOICE ANIMATION

CONTENT DATA

In order to describe content data which is constructed of multiple data elements of diverse nature,
it is required to define another descriptor which specifies construction type (such as SGML, MIME,
ScriptX, etc., or more simply SET{doc, voice, animation}). This release of the architecture does not
cover those constructed content data types.

2.1.2.1.2. Mode of Content Data Operation

The following modes of operation are defined for content data operation. Note that it does not
describe the characteristics of content data itself, but does describe how it should be handled by
client/server applications.

� Transparent Mode

Content data is handled as a bulk data without interpreting its content

Salutation Architecture Specification V2.0c Part-2

63 06/01//99

� Non-Transparent Mode

Content data is handled by interpreting its content

Most of content data handled by Salutation document systems are document data. However, when
they are operated in transparent mode, content data other than document data can be handled in
Salutation document systems.

Operation modes of content data are implicitly determined by the value of the correspondent
attributes, or by the nature of the Functional Unit.

Functional Unit Transparent Mode Non-Transparent Mode

[Print] (Not Applicable) Default

[Fax Data Send] faxProtocol = BFT Protocol faxProtocol = G3 Protocol

[DOC Storage] modeOfStore = File Data Mode modeOfStore = Doc Data Mode

Transparent mode is implied when File data mode is selected for [DOC Storage] Functional Unit.

2.1.2.1.3. Definition of Document Data

Document data is a meaningful unit of data sequence which can be transformed (rasterized) into a
set of picture element data mapped onto two-dimensional presentation space. More simply, it is
digital data representation of printable, or visible sequence of pages.

The term "rasterizing" is defined as a process to transform document data into a set of picture
element data mapped onto two dimensional presentation space (such as memory space) by
referring either internal attributes of document data or external attributes set as a parameter of
service request commands.

Document Data

Rasterizing

Final Form

Picture
Element

Attributes for Rasterizing

Attributes for Rasterizing

Page

Salutation Architecture Specification V2.0c Part-2

64 06/01//99

2.1.2.1.3.1. Document Data Format

Document data is categorized as follows in accordance with each format type. The grouping is just
for clarification, and need not be incorporated in the architecture as an attribute to describe
document data types.

Type Description Format External Attributes Setting

Image Bitstream Bi-Level Yes (fill order, resolution, etc., ..)

Grayscale Yes

Color Yes

Structured Image Data MS-53A12

TIFF

BMP

PCX

DCX

 :

No

(required attributes will be contained within
document data)

Printer Language

(including PDL)

PS

ESC/P

 :

No

(required attributes will be contained within
document data)

Text Plain-Text

 :

Yes (character set, etc., ..)

Others (for further study) (for further study)

Default Interchange Format and Compatibility Considerations

Types of document data which can be handled within Salutation document systems depend upon
the capabilities of each implemented Functional Unit. In order to assure the minimum level of
compatibility (document data interchange-ability) across Salutation document systems, it is
recommended that all the compliant systems, when in a non-transparent operation mode, support
the common data format, e.g. bi-level image bit-stream, as described in the following sections. The
common data format will be dined in the next release.

A client application should negotiate with a server application on what kind of document data it can
handle and prepare appropriate document data from original data by applying "format conversion"
when required.

Salutation Architecture Specification V2.0c Part-2

65 06/01//99

A pp lica tion

C LIE N T A P P LIC A TIO N

S E R V E R
A P P L IC A TIO N

P os tS crip t
D a ta

P os tS crip t
D a ta

or » »

P rint
O utput

A pp lication
D ata

Se rv er w ith P ostScr ip t R asteriz ing C apab ility

F orm at
C onv ers ion

or » »P o stS cr ip t
R aster izer

R as te riz ing

A pp lication

C L IE N T A P P LIC A TIO N

S E R V E R
A P P L IC A TIO N

B i-Le vel
Im age D ata

B i-Le vel
Im age D ata

B i-Lev el
R as te rize r

P rin t
O u tp ut

A p p lication
D a ta

S erver w ith M in im um R asteriz ing C apab ility

F orm at
C onvers ion

R aster iz ing

2.1.2.1.3.2. Document Data Attributes

Document data format attributes indicate the formats of document data in several contexts of
Salutation document systems.

The following enumerated values are assigned to document data formats.

DataFormat ::= ENUMERATED
{

notSpecified (127),

Salutation Architecture Specification V2.0c Part-2

66 06/01//99

--Document Related Data Format Start
--
-- bi-Level Image Bitstream listed bellow
-- When data format is "biLevelImageStream", "biLevelImageStreamAxisSize",
-- "biLevelImageStreamTotalSize", or "biLevelImageStreamPageDimension", "ImageStreamAttributes",
-- must be referred or specified.

biLevelImageStream (1000), --Three ImageSize types are supported
-- When this data format is set, the image size
-- attribute can be selected from "axisSize",
-- "totalSize" or "pageDimensions".

biLevelImageStreamAxisSize (1001), -- axisSize in ImageSize is supported.
-- When this data format is set, the image size
-- attribute must be "axisSize".

biLevelImageStreamTotalSize (1002), -- totalSize in ImageSize is supported.
-- When this data format is set, the image size
-- attribute must be "totalSize".

biLevelImageStreamPageDimension (1003), -- pageDimension in imageSize is supported.
-- When this data format is set, the image size
-- attribute must be "pageDimensions".

-- Structured Image Data listed bellow
ms53A12 (1010),
tiff (1011),
bmp (1012),
pcx (1013),
dcx (1014),
winMetaFile (1015),
os2MetaFile (1016),
xdw (1017), -- DocuWorks image format. Fuji Xerox Co. Ltd.
jfif (1018), -- Color image format

Salutation Architecture Specification V2.0c Part-2

67 06/01//99

-- Printer Datastream listed bellow.
-- Each PDL needs the version information. PDL version will be further studied.

langPCL (1203), -- Printer Control Language. Hewlett-Packard Co.
lang201PL (1204), -- NEC Co.
langPJL (1205), -- Printer Job Language. Hewlett-Packard Co.
langPS (1206), -- PostScript(TM). Post Script is a trademark of

-- Adobe Systems Inc.
langEscapeP (1209), -- EPSON ESC/P(TM). Epson Co.
langLIPS (1239), -- LBP Image Processing System. Canon Inc.
langIPDS (1250), -- Intelligent Printer Data Stream,

-- IBM Printing Systems. Corresponds to
-- langIPDS(7) of RFC1759.

langPAGES (1251), -- Page Printer Advanced Graphics Escape Set.
-- IBM Japan Ltd.

langMODCA (1252), -- Mixed Object Document Content Architecture,
-- IBM Printing Systems. Corresponds to
-- langIPDS(15) of RFC1759.

langRPDL (1260), -- Ricoh Corp.
langART (1270), -- Fuji Xerox Co. Ltd.

-- Unstructured Text Data listed bellow. (for further study)
plainText (1400),

--
-- Structured Text Data (for further study)
--
-- Portable Document

pdf (1600) -- Portable Document Format,
-- Adobe Systems Inc.

-- Other Types (for further study)
--
-- Document Related Data Format End
}

ImageStreamAttributes ::= SEQUENCE
{

-- All parameters shall be specified for “biLevelImageStream”
-- document format.

imageSize [0] ImageSize,
imageCompAlgorithm [1] ImageCompAlgorithm,
imageByteFillOrder [2] ByteFillOrder,
imageResolution [3] ImageResolution

}

Salutation Architecture Specification V2.0c Part-2

68 06/01//99

ImageSize ::= CHOICE
{

axisSize [0] SEQUENCE
{

xAxisSize [0] INTEGER, -- Unit : dot
yAxisSize [1] INTEGER -- Unit : dot

},
totalSize [1] INTEGER, -- Unit : byte
pageDimensions [2] PageDimensions

}

PageDimensions ::= SEQUENCE
{

recordingWidth [0] RecordingWidth,
maximumRecordingLength [1] MaximumRecordingLength

}

RecordingWidth ::= ENUMERATED
{

rw864 (0),
rw1216 (1),
rw1728 (2),
rw2048 (3),
rw2432 (4)

}

MaximumRecordingLength ::= ENUMERATED
{

a4 (0),
b4 (1),
unlimited (2)

}

ImageCompAlgorithm ::= ENUMERATED
{
-- Following value is meaningful when document data format is biLevelImageStream or tiff.

raw (0),
mh (1),
mhb (2), -- EOL Byte Boundary
mr (3),
mrb (4), -- EOL Byte Boundary
mmr (5),
jpeg (6), -- Compression for color image
jbig (7), -- Progressive Bi-level Image Compression

-- ITU-T Recommendation T.82
other (127)

}

Salutation Architecture Specification V2.0c Part-2

69 06/01//99

ByteFillOrder ::= ENUMERATED
{
-- Following value is meaningful when document data format is biLevelImageStream or tiff.
-- ByteFillOrder shows the bit order in the image data byte.
-- When image data is raw data (not compressed), it shows the Byte Fill Order of raw image
-- data. When image data is compressed, it shows the Byte Fill Order of compressed data.

-- addr0 addr1 addr2 addr3
-- [0..7] [8..15] [16..23] [24..31] .. ByteFillOrder=msb case
-- [7..0] [15..8] [23..16] [31..24] .. ByteFillOrder=lsb case

msb (0),
lsb (1)

}

ImageResolution ::= ENUMERATED
{
-- Following value is meaningful when document data format is biLevelImageStream , tiff, bmp, pcx
-- or dcx.

normal (0), -- 8x3.85l/mm
fine (1), -- 8x7.7l/mm
semi-superFine (2), -- 8x15.4l/mm
superFine (3), -- 16x15.4l/mm
dpi180 (4), -- 180dpi
dpi200 (5), -- 200dpi
dpi240 (6), -- 240dpi
dpi300 (7), -- 300dpi
dpi360 (8), -- 360dpi
dpi400 (9), -- 400dpi
dpi600 (10), -- 600dpi
dpi720 (11), -- 720dpi
dpi800 (12), -- 800dpi
dpi1200 (13), -- 1200dpi
dpi200x100 (30), -- 200x100dpi G4 Optional
dpi100 (31) -- 100dpi

}

2.1.2.2. Document Transfer Procedure
This section describes document transfer procedure defined for Salutation document systems.
Document transfer procedure follows the definition of Data Transfer Message Sequence described
in "Data Transfer Messages" section on page 18.

Some Functional Units will provide capability of spooling series of job requests and content data,
others will not. The document transfer procedure covers both Functional Units with a spooler and
without a spooler.

2.1.2.2.1. Typical Scenarios and Flow Diagrams

To start with, typical example scenarios are given :

Salutation Architecture Specification V2.0c Part-2

70 06/01//99

� Printing document to [Print] Functional Unit in copier (Client to Server)

A user completes a sales report using a word processor running on a PC. The user needs ten
hard copies of the report for circulation to related departments. The user drags and drops the
report to a Salutation copier icon on a PC screen. A client application on the PC sends "Print"
command request via LAN network to [Print] Functional Unit embedded in a Salutation copier
on another floor.

� Sending document to [Fax Data Send] Functional Unit in fax server (Client to Server)

He now is ready to send the report to his business partners after his updating the reports on
the PC. He again drags and drops the updated report to a fax icon on a screen with specifying
the list of partners’ names and phone numbers. A client application on the PC sends "Send
Fax" command request via network to [Fax Data Send] Functional Unit in a fax machine. The
report will be faxed from him to those who locate in the partners’ offices.

� Retrieving document from [DOC Storage] Functional Unit in fax (Server to Client)

[DOC Storage] Functional Unit in the fax spools received documents for client access. A
notification message of document receipt will appear on the client PC. He browses the
received documents on PC screen and then selects a document in the list by double-clicking
the document. A client application on the PC sends a request to [DOC Storage] Functional
Unit in the fax to retrieve a document into the PC local storage.

2.1.2.2.2. Guidelines for Applying Data Transfer Message Sequence

The following bullets summarize the guidelines for applying Data Transfer Message Sequence
defined in "Data Transfer Messages" on page 18.

� In case that the format of document data is bi-level image stream and when in a non-
transparent operation mode, the document data shall be divided into multiple data blocks so
that each data block contains one “page” of the document. The begin/end data block flags of
TransferDataBlock command described on page 29 are used to indicate the page boundaries.

Salutation Architecture Specification V2.0c Part-2

71 06/01//99

Client Server

Document Transfer Message Sequence

DataBlockDescription(BiLevelImageStream, ..)=>

<=RequestNextData

Sending First Page of Document

TransferDataBlock(Begin, End)=>

<=RequestNextData

Sending 2nd Page of Document

TransferDataBlock(Begin, End)=>

<=RequestNextData

Sending 3rd (last) Page of Document

TransferDataBlock(Begin, End, Last)=>

<=ACK

� Each data block may be segmented freely by application.

Client Server

:

Sending First Segment of Data Block

TransferDataBlock(Begin)=>

<=RequestNextData

Sending 2nd Segment of Data Block

TransferDataBlock()=>

<=RequestNextData

Sending 3rd (last) Segment of Data Block

TransferDataBlock(End)=>

<=RequestNextData

:

However, for the sake of simplicity, examples shown below assume a whole document data is
transferred in one TransferDataBlock command.

� Use of DataBlockDescription Message

Salutation Architecture Specification V2.0c Part-2

72 06/01//99

DataBlockDescription is used to convey information associated with document data, such as
document data format descriptor and other attributes required for rasterizing / interpretation.
Within Salutation document systems, DataBlockDescription message takes the constructed
parameter "documentDataDescriptor" as defined bellow.

DocumentDataDescriptor ::= SEQUENCE
{

documentDataFormat [0] DataFormat,
documentFormatInterpretation [1] DocFormatInterpretation OPTIONAL

}

DocFormatInterpretation ::= CHOICE
{

imageStreamAttributes [0] ImageStreamAttributes
-- Chosen when documentDataFormat is
-- biLevelImageStream.
--
-- Other interpretation attributes are for
-- further study.

}

When a document is transferred, a DataBlockDescription message must be included before
the first TransferDataBlock message in a Data Transfer Message Sequence so that the
receiver will be able to know the format of the document. Additional DataBlockDescription
messages must be inserted as required if the document consists of data blocks in multiple
formats.

� When a document of bi-level image stream format is transferred, all parameters of
“ImageStreamAttributes” must be specified within the “DocumentDataDescriptor” parameter
of the DataBlockDescription message so that the receiver will be able to interpret the
document data correctly. If the document data is transferred from a URL-specified data
location, the “DocumentDataDescriptor” parameter must be included in the command that
initiates the document data transfer because DataBlockDescription message cannot be used
since the document data are transferred under a protocol out side of the Salutation
architecture.

2.1.2.2.3. Requesting Document Transfer between Functional Units

A client can also request document transfer between Functional Units.

Salutation Architecture Specification V2.0c Part-2

73 06/01//99

Typical scenario is that a client requests [Print] Functional Unit to print a document stored in [DOC
Storage] Functional Unit. The following procedure is applied.

Client Server

Establish Service Session to Access [DOC Storage] Functional Unit

OpenService(DOC Storage) =>

Job Request Message Sequence - Retrieve Document from DOC Storage

RetrieveDoc(DocumentID, DataDestination=ExportPool) =>

<= ACK(DataHandle)

Close Session with [DOC Storage] Functional Unit

CloseService =>

Establish Service Session to Access [Print] Functional Unit

OpenService(Print) =>

Job Request Message Sequence - Print Document

Print(.., DataSource=AbsoluteFunctionalUnitHandle, DataHandle) =>

<= ACK(..)

Close Session with [Print] Functional Unit

CloseService =>

[Print] Establishes Service Session with [DOC Storage]

OpenService(DOC Storage) =>

Job Request Message Sequence - Print Document

RequestDataTransfer(DataHandle) =>

<= DataBlockDescription

RequestNextData =>

<= TransferDataBlock

ACK(NULL) =>

Salutation Architecture Specification V2.0c Part-2

74 06/01//99

[Print] Closes Session with [DOC Storage]

CloseService =>

2.2. [Print] Functional Unit

2.2.1. Overview
[Print] Functional Unit provides a printing service for a client user to print documents on local or
remote printing equipment and also to query various status of printing jobs and equipment. The
client user can select suitable equipment for the print job by inquiring the equipment capability
provided by the attributes of [Print] Functional Unit. [Print] Functional Unit can be found typically
on LAN attached printer or copier or fax equipment.

The following figure illustrates a configuration model to understand how [Print] Functional Unit
works with other resources within equipment and with remote client who issues service request
commands.

physical
storage

Salutation Printer/Fax/Copier (Server)

Document
or File

Equipment local applications

[Print] Functional Unit

operator panel,Local or Remote
spooler

Imple.
 Part

Global
 Attribute

Private
Attribute

Other Functional Units

[Doc Storage], [FAX Data Send], ..

Print the document

LAN attached PC (Client)

Check a suitable printer
for color dcoument in
high resolution

Architecture scope

Response

Command

Check job progress

Capability

Attribute
Repository

Print
Job
Que

Printer Dynamic,
Status

 [Print] Functional Unit is considered to be composed of the following logical sub-components or
service elements.

� Capability Attribute

� Global Attribute

� Private Attribute

� Printer Dynamic Status

� Print Job Queue

Salutation Architecture Specification V2.0c Part-2

75 06/01//99

2.2.2. List of Functional Unit Attributes
The following table describes the attributes defined for [Print] Functional Unit, and specifies what
protocol data unit will use those attributes. A ChangeJobAttribute can apply to the Attributes, which
have a “Data Type as Command Attribute” and are included in Print command.

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute
(default1)

Private/
Job

Attribute

personalityProtocol 10000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportedCommand 10001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 10002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

spoolStorage 10003 N/A SpoolStorage
(boolEqualTo)

No No/No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

10004 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

documentFormat 10010 DataFormat SET OF DataFormat
(setIntDoesContain)

No No/No

imageCompAlgorithm 10011 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No/No

imageByteFillOrder 10012 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No/No

imageResolution 10013 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No/No

printPaperSize 10020 PaperSize SET OF PaperSize
(setIntDoesContain)

Yes No/No

printResolution 10021 ImageResolution SET OF ImageResolution
(setIntDoesContain)

Yes No/No

printPaperDirection 10022 PaperDirection SET OF PaperDirection
(setIntDoesContain)

Yes No/No

printCopyCount 10023 INTEGER INTEGER -- max value
(intGreaterThanOrEqualTo)

No
(1)

No/No

printPaperInputSelect 10024 PrintPaperInputSelect SET OF
PrintPaperInputSelect
(setIntDoesContain)

Yes No/No

printPaperOutputSelect 10025 PrintPaperOutputSelect SET OF
PrintPaperOutputSelect
(setIntDoesContain)

Yes No/No

1 Implementation default values to be referred to when neither command parameter nor Private Attribute value is set.

Salutation Architecture Specification V2.0c Part-2

76 06/01//99

printOutputBinSelect 10026 PrintOutputBinSelect PrintOutputBinSelect
—maximum bin#
(intGreaterThanOrEqualTo)

Yes No/No

printDuplexMode 10027 PrintDuplexMode SET OF
PrintDuplexModeSelect
(setIntDoesContain)

Yes No/No

maximumBindingMargin 10028 INTEGER INTEGER -- max value
(intGreaterThanOrEqualTo)

Yes No/No

printFaceUpMode 10029 PrintFaceUpMode SET OF PrintFaceUpMode
(setIntDoesContain)

Yes No/No

printStaplingSelect 10030 PrintStaplingSelect SET OF
PrintStaplingSelec(setIntDoes
Contain)

Yes No/No

printPriority 10040 SimpleJobPriority SET OF SimpleJobPriority
(setIntDoesContain)

Yes No/Yes

modeOfDataTransfer2 10041 DataTransferMode SET OF DataTransferMode
(setIntDoesContain)

Yes No/No

dataLocationScheme 10042 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No/No

dataTransferTimeOutSettabl
e

10043 N/A BOOLEAN
(boolEqualTo)

No No/No

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

10044 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
-- Global attribute indicates the
-- default length. If the global
-- attribute value is zero, the
-- default length is not fixed or
-- unknown.
-- If the private attribute value
is
-- set to zero, the FU should
-- wait as long as possible.
-- However, use of zero should
-- be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes/No
(No, if the
previous

attribute is
FALSE)

The following enhancements are to be considered for [Print] Functional Unit.

� Version management of [Print] Functional Unit. For evolving command parameters and
attributes, mechanism should be defined to identify and to handle multiple versions of
specifications.

� Attribute enhancement to identify PDL level and version.

2.2.3. Message & Protocol
This section describes service request protocol for [Print] when the Salutation Personality Protocol
is selected.

2 When “spoolStorage” = FALSE, only “delayed” mode is allowed for this attribute.

Salutation Architecture Specification V2.0c Part-2

77 06/01//99

2.2.3.1. Document Data Transfer Request
The following commands and responses are used for the Document Data Transfer Request
procedure to print a document. Abstract syntax definition of common protocol data unit and its
usage for document transfer procedure are described in either "Data Transfer Messages" section
on page 18 or "

Document Transfer Procedure" section on page 69.

� [Print] FU Mandatory support Command

� Print

� [Print] FU Optional support Command

� VendorEscape

� [Print] FU Mandatory support Common Commands and Responses

� RequestDataTransfer

� DataBlockDescription

� TransferDataBlock

� RequestNextData

� ACK and NACK

2.2.3.1.1. Print Request

Print command is used to request [Print] Functional Unit to print a document data.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

78 06/01//99

Print ::= [APPLICATION tagPrint] SEQUENCE
{

COMPONENTS OF MsgHeader,
modeOfDataTransfer [0] DataTransferMode OPTIONAL,

-- Override Global/Private Attribute
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Omitted in immediate mode data transfer from client, or
-- if the source data location is specified by URL

inputDocumentFormat [3] DocumentDataDescriptor OPTIONAL,
-- Present if and only if dataSource = url

life [4] Life DEFAULT job,
-- Specify how long FU should keep a job status:
-- for job life or for session life or persistently.

jobStatusNotificationMode [5] JobStatusNotificationMode OPTIONAL,
-- If omitted, no notification is made.

notificationScheme [6] NotificationScheme OPTIONAL,
-- Omitted unless the job status notifications are to be
-- sent to a [Client] FU other than the client that is
-- sending this command

printControlAttribute [7] PrintControlAttribute OPTIONAL
}

PrintControlAttribute ::= SEQUENCE
{

printPaperSize [0] PaperSize OPTIONAL,
printResolution [1] ImageResolution OPTIONAL,
printPaperDirection [2] PaperDirection OPTIONAL,
printCopyCount [3] INTEGER OPTIONAL,
printPaperInputSelect [4] PrintPaperInputSelect OPTIONAL,
printPaperOutputSelect [5] PrintPaperOutputSelect OPTIONAL,
printOutputBinSelect [6] PrintOutputBinSelect OPTIONAL,
printDuplexMode [7] PrintDuplexMode OPTIONAL,
printFaceUpMode [8] PrintFaceUpMode OPTIONAL,
printPriority [9] SimpleJobPriority OPTIONAL,
printStaplingSelect [10] PrintStaplingSelect OPTIONAL,
printFileName [11] DisplayString OPTIONAL

}

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

Salutation Architecture Specification V2.0c Part-2

79 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidModeOfDataTransfer modeOfDataTransfer is incorrect or not supported 129

rcInvalidDataSource dataSource is incorrect or not supported 130

rcInvalidDataHandle dataHandle is incorrect 131

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

132

rcInvalidLife life is incorrect or not supported 133

rcInvalidJobStatusNotificationMode jobStatusNotificationMode is incorrect or not
supported

134

rcInvalidNotificationScheme notificationScheme is incorrect or not supported 135

rcInvalidPaperSize printPaperSize is incorrect or not supported 136

rcInvalidResolution printResolution is incorrect or not supported 137

rcInvalidPaperDirection printPaperDirection is incorrect or not supported 138

rcInvalidCopyCount printCopyCount is incorrect or not supported 139

rcInvalidPaperInputSelect printPaperInputSelect is incorrect or not
supported

140

rcInvalidPaperOutputSelect printPaperOutputSelect is incorrect or not
supported

141

rcInvalidOutputBinSelect printOutputBinSelect is incorrect or not supported 142

rcInvalidDuplexMode printDuplexMode is incorrect or not supported 143

rcInvalidFaceUpMode printFaceUpMode is incorrect or not supported 144

rcInvalidPriority printPriority is incorrect or not supported 145

rcInvalidStaplingSelect printStaplingSelect is incorrect or not supported 146

2.2.3.2. Attribute Operations
The following command and response are used for attribute controls. The usage of those
commands and responses are described in "Attribute Repository Messages" section on page
30.

� [Print] FU Mandatory support common Command

� GetPrivateAttribute

� GetGlobalAttribute

� SetPrivateAttribute

� ACK and NACK

Attributes affected by the above commands are listed in "List of Functional Unit Attributes" section.

Salutation Architecture Specification V2.0c Part-2

80 06/01//99

2.2.3.3. Dynamic Status Operations
Dynamic Status operations allow a client to know the aspect of Functional Unit and any transition in
the aspects. Dynamic Status Parameter describes the aspects, for example, noPaper. A client
may query the current values of Dynamic Status Parameter, or request [Print] to notify an Event
when any transition occurs in the values of Dynamic Status Parameter.

The following commands and response are used for dynamic status operations. The usage of
those commands and responses are described in "Dynamic Status Messages" section on page
49.

� [Print] FU Mandatory support common Command

� QueryDynamicStatus

� ACK and NACK

� [Print] FU Optional support Command

� SubscribeEvent, UnsubscribeEvent, and NotifyEvent (These commands belong to the
same Optional Group, so an FU must support all these commands if it supports them.)

The following Dynamic Status Parameters are defined for [Print] Functional Unit.

Dynamic Status
Parameter

Query Event ID Description

PrinterOperationStatus Yes Yes 10000 status of printing equipment.

PrinterErrorDetail Yes No 10001 detail error information of equipment’s.

FreeStorageSize Yes No 10002 available storage size, K Byte.

PrinterPaperInputTray Yes No 10003 status of paper size and direction in each input tray.

ListExcerptPrintJob Yes Yes 10004 lists a excerpt from print job descriptions

Data Type of Dynamic Status Parameter

PrinterOperationStatus ::= SET OF PrinterStatusCode

Salutation Architecture Specification V2.0c Part-2

81 06/01//99

PrinterStatusCode ::= ENUMERATED
{

noPaper (0),
noToner (1),
doorOpen (2),
jammed (3),
offline (4),
receiving (5),
error (6),
normal (7),
paperNearEnd (8),
tonerNearEnd (9),
fatalError (10), -- errors requiring equipment repair
others (127)

}
-- PrinterStatusCode may change from normal to noPaper and
-- doorOpen at the same time. Then the [Print]FU issues
-- NotifyEvent(SubscriptionHandle, DynamicStatusID, SET OF
-- PrinterStatusCode). The PrinterStatusCodes are noPaper and
-- doorOpen. If the doorOpen returns to normal, again the [Print]FU
-- issues NotifyEvent(SubscriptionHandle, DynamicStatusID, SET OF
-- PrinterStatusCode). The PrinterStatusCodes is noPaper only.

PrinterErrorDetail ::= SET OF PrinterErrorDescription

PrinterErrorDescription ::= SEQUENCE
{

printerStatusCode : [0] PrinterStatusCode,
systemError [1] DisplayString, -- detail description
others [2] DisplayString-- detail description

}
PrinterPaperInputTray ::= SET OF PrinterPaperInputTrayStatus

PrinterPaperInputTrayStatus ::= SEQUENCE
{

printPaperInputSelect [0] PrintPaperInputSelect,
paperSize [1] PaperSize,
paperDirection [2] PaperDirection,
paperExistence [3] BOOLEAN OPTIONAL

-- If TRUE, input tray is not empty
-- If FALSE, input tray is empty

}

FreeStorageSize ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

82 06/01//99

ListExcerptPrintJob ::= SET OF ExcerptPrintJobDescription

ExcerptPrintJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
printPriority [2] SimpleJobPriority

}

2.2.3.4. Job Related Operations
[Print] FU does not support job entry operation. Job related operations allow a client application to
control a job execution such as canceling a job, and to know the job execution status. The usage
of those commands and responses are described in "Job-Related Messages" section on page 33.

2.2.3.4.1. Controlling Job execution

[Print] Functional Unit defines printPriority attribute as Job Control Attribute. The following
commands may be used to change the value of the attribute or cancel a job.

� [Print] FU Mandatory support common command

� CancelJob

� FreeJobHandle

� ChangeJobAttribute

� ACK and NACK

2.2.3.4.2. Job Status Notification

[Print] Functional Unit provides flexible ways for a client to know the status or the result of Print
Service request. Refer to "Job Status Notification" section on page 34.

The following commands and responses are used for job status notification.

� [Print] FU Mandatory support command

� QueryJobStatus

� ACK and NACK

� [Print] FU Optional support common command

� NotifyJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the
same Optional command Group, so an FU must support all these commands if it supports
them.

2.2.3.4.3. Job Suspend/Resume

[Print] Functional Unit supports the following commands to suspend/resume jobs submitted by
“Print” command.

� [Print] FU Mandatory support common command

Salutation Architecture Specification V2.0c Part-2

83 06/01//99

� SuspendJob

� ResumeJob

2.2.3.4.4. Job Status Monitor Start/Cancel

[Print] Functional Unit supports the following commands to start/cancel job-status-monitoring.

� [Print] FU Optional support common command

� StartMonitorJobStatus

� CancelMonitorJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the
same Optional command Group, so an FU must support all these commands if it supports
them.

2.2.3.4.5. List FU Job Status

[Print] Functional Unit supports the following commands to get the list of job in the [Print]
Functional Unit.

� [Print] FU Mandatory support command

� ListPrintJob

� ACK and NACK

ListPrintJob Command

ListPrintJob command is used to get the list of job in the [Print] Functional Unit.

ASN.1 Syntax Definition

ListPrintJob ::= [APPLICATION tagListPrintJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}

Data transferred by TransferDataBlock command is as follows;

PrintJobList ::= SET OF PrintJobDescription

Salutation Architecture Specification V2.0c Part-2

84 06/01//99

PrintJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
requesterUserId [1] UserID,

-- "UserID" is set from the "UserID" specified in the Open
-- Service request that has established a service session.
-- Therefore, a client application must have registered as a
-- [Client] FU to actually specify its "User ID" value so that it
-- appears in the JobList.

jobStatusCode [2] JobStatusCode,
dataSize [3] INTEGER OPTIONAL,
queuedTime [4] DisplayStringOPTIONAL,
printPriority [5] SimpleJobPriority OPTIONAL,
printCopyCount [6] INTEGER OPTIONAL,
printPageCount [7] INTEGER OPTIONAL,
printFileName [8] DisplayStringOPTIONAL

}

2.2.3.4.6. Job-Specific Reason Code

The following job-specific reason codes are defined to indicate the specific error conditions. The
reason code supplements JobStatusCode that represents overall job status, e.g., completed,
queued, suspended, and is an optional parameter present only when JobStatusCode is suspended
or error. Refer to "Data Type Definition" on page 198 for the complete definition of the
JobStatusCode.

The reason codes will be returned in a NotifyJobStatus or an ACK response to QueryJobStatus
Command.

Name Description ReasonCode

suspendedByClientRequest suspended by SuspendJob command 128

temporaryBusy suspended due to equipment temporary busy. 129

waitingForRetry in waiting mode for retry. 130

retryOut terminated due to retry out of printing attempts. 131

printerError terminated due to equipment detected errors, e.g.,
noPaper, noToner, and etc..

132

2.3. [FAX Data Send] Functional Unit

2.3.1. Overview
[FAX Data Send] Functional Unit provides a service for someone to request facsimile data
transmission from a local or a remote equipment (including computer).

The following figure illustrates a configuration model to understand how [FAX Data Send]
Functional Unit works with other resources within equipment and remote clients who issue service
requests.

Salutation Architecture Specification V2.0c Part-2

85 06/01//99

LAN attached PC (Client)

SendFAX Command
 for transmitting document
 to a remote fax

Command

Response

Current Scope
of Architecture

Telephone
Network

Salutation FAX (Server)

physical
storage

Document
or File

Equipment local applications

[Fax Data Send] Functional Unit

operator panel, ...Local or Remote
spooler

Spooler
Manager

Message
Processor/
Scheduler

Attribute
Repository

Other Functional Units

[Doc Storage], [Address Book], ..

Event
Monitor

FAX
Device
Drivers

Data
Conversion

logic

[FAX Data Send] provides a remote user with the capability to send a document or data via FAX
protocol over telephone network, and to inquire the various status of the equipment.

[FAX Data Send] Functional Unit is considered to be composed of the following logical sub
components or service elements.

� Message Processor and Scheduler for SendFAX command process

� Spooler Manager

� Event Monitor

� Attribute Repository

� FAX Device Drivers including for Fax control that may include Data conversion logic

Salutation Architecture Specification V2.0c Part-2

86 06/01//99

2.3.2. List of Functional Unit Attributes
The following table describes the attributes defined for [FAX Data Send] Functional Unit, and
specifies what protocol data unit will use those attributes.

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private/
Job

Attribute

personalityProtocol 12000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportedCommand 12001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 12002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

numOfCalledSubscribers 12003 N/A NumOfCalledSubscribers
-- max integer value
(intGreaterThanOrEqualTo)

No No/No

spoolStorage 12004 N/A SpoolStorage
(boolEqualTo)

No No/No

faxSendOrdering 12005 N/A
(TelephoneNumberString be
always specified when used)

FaxSendOrdering
(boolEqualTo)

No No/No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

12006 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

documentFormat 12010 DataFormat SET OF DataFormat
(setIntDoesContain)

No No/No

imageCompAlgorithm 12011 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No/No

imageByteFillOrder 12012 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No/No

imageResolution 12013 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No/No

coverSheetGen 12020 CoverSheetGen CoverSheetGen
(boolEqualTo)

Yes No/No

pageHeaderGen 12021 PageHeaderGen PageHeaderGen
(boolEqualTo)

Yes No/No

faxProtocol 12030 FAXProtocol SET OF FAXProtocol
(setIntDoesContain)

Yes No/No

requestPriority 12031 SimpleJobPriority
(normal)

SET OF SimpleJobPriority
(setIntDoesContain)

Yes No/Yes

Salutation Architecture Specification V2.0c Part-2

87 06/01//99

retryCount 12032 INTEGER INTEGER
(intGreaterThanOrEqualTo)

Yes No/Yes

modeOfDataTransfer3 12035 DataTransferMode SET OF DataTransferMode
(setIntDoesContain)

Yes No/No

dataLocationScheme 12036 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No/No

dataTransferTimeOutSettabl
e

12037 N/A BOOLEAN
(boolEqualTo)

No No/No

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

12038 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
—Global attribute indicates the
—default length. If the global
—attribute value is zero, the
—default length is not fixed or
—unknown.
-- If the private attribute value
is
—set to zero, the FU should
—wait as long as possible.
—However, use of zero should
—be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes/No
(No, if the
previous

attribute is
FALSE)

2.3.3. Message & Protocol
This section describes Service Request protocol for [FAX Data Send] when the Salutation
Personality Protocol is selected.

2.3.3.1. Document Data Transfer Request
The following commands and responses are used for the Document Data Transfer Request
procedure to send Fax data. Abstract syntax definition of common protocol data unit and its usage
for document transfer procedure are described in either "Data Transfer Messages" section on
page 18 or "

Document Transfer Procedure" section on page 69.

� [Fax Data Send] FU Mandatory support command

� SendFAX

� [Fax Data Send] FU Mandatory support command

� RequestDataTransfer

� DataBlockDescription

� TransferDataBlock

� RequestNextData

� ACK and NACK

3 When “spoolStorage” = FALSE, only “delayed” mode is allowed for this attribute.

Salutation Architecture Specification V2.0c Part-2

88 06/01//99

� [Fax Data Send] FU Optional support command

� VendorEscape

2.3.3.1.1. Send Fax Data Request

SendFAX command is used to request [FAX Data Send] Functional Unit to send a data to a
certain destinations via FAX protocol.

ASN.1 Syntax Definition

SendFAX ::= [APPLICATION tagSendFAX] SEQUENCE
{

COMPONENTS OF MsgHeader,
modeOfDataTransfer [0] DataTransferMode OPTIONAL,

-- Override Global / Private Attribute
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Omitted in immediate mode data transfer from client, or
-- if the source data location is specified by URL

inputDocumentFormat [3] DocumentDataDescriptor OPTIONAL,
-- Present if and only if dataSource = url

life [4] Life DEFAULT job,
-- Specify how long FU should keep a job status:
-- for job life or for session life or persistently.

jobStatusNotificationMode [5] JobStatusNotificationMode OPTIONAL,
-- If omitted, no notification is made.

notificationScheme [6] NotificationScheme OPTIONAL,
-- Omitted unless the job status notifications are to be
-- sent to a [Client] FU other than the client that is
-- sending this command

faxControlAttribute [7] FaxControlAttribute
}

Data Type used as SendFAX Command Parameters

FaxControlAttribute ::= SEQUENCE
{

tsInfo [0] TSInfo OPTIONAL,
csInfoGroup [1] SET OF CSInfo,
requestPriority [2] SimpleJobPriority OPTIONAL,
retryCount [3] INTEGER OPTIONAL

}

Salutation Architecture Specification V2.0c Part-2

89 06/01//99

TSInfo ::= SEQUENCE
{

name [0] DisplayString OPTIONAL,
section [1] DisplayString OPTIONAL,
company [2] DisplayString OPTIONAL,
phoneNumber [3] TelephoneNumberString OPTIONAL,
faxNumber [4] TelephoneNumberString OPTIONAL,
address [5] DisplayString OPTIONAL,
subject [6] DisplayString OPTIONAL,
coverSheetGen [7] CoverSheetGen OPTIONAL,
memoForCover [8] DisplayString OPTIONAL,
pageHeaderGen [9] PageHeaderGen OPTIONAL,
memoForHeader [10] DisplayString OPTIONAL

}

CoverSheetGen ::= BOOLEAN

PageHeaderGen ::= BOOLEAN

CSInfo ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
faxNumber [1] TelephoneNumberString,
subAddressNumber [2] DisplayString OPTIONAL,
name [3] DisplayString OPTIONAL,
section [4] DisplayString OPTIONAL,
company [5] DisplayString OPTIONAL,
phoneNumber [6] TelephoneNumberString OPTIONAL,
address [7] DisplayString OPTIONAL,
faxProtocol [8] FAXProtocol DEFAULT g3,
orderingData [9] TelephoneNumberString OPTIONAL

-- Ordering data is sent out by DTMF(Dual Tone Multi-
-- Frequency, G3) prior to G3 communication or UUI
-- (User User Information, G4) in G4 communication.

}

FAXProtocol ::= ENUMERATED -- G3 is assumed when omitted.
{

g3 (1),
g4 (2),
auto (3) -- Automatic selection of FaxProtocol to be used

}

FaxSendOrdering ::= BOOLEAN
-- FaxSendOrdering is used in, for example, facsimile network
-- and mail service. “phoneNumber” specifies a phone
-- number for a service and orderingData is for final recipient
-- number

Salutation Architecture Specification V2.0c Part-2

90 06/01//99

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

NACK Response

Name Description ReturnCode

rcInvalidModeOfDataTransfer modeOfDataTransfer is incorrect or not supported 128

rcInvalidDataSource dataSource is incorrect or not supported 129

rcInvalidDataHandle dataHandle is incorrect 130

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

131

rcInvalidLife life is incorrect or not supported 132

rcInvalidJobStatusNotificationMode jobStatusNotificationMode is incorrect or not
supported

133

rcInvalidNotificationScheme notificationScheme is incorrect or not supported 134

rcInvalidCoverSheetGen coverSheetGen is incorrect or not supported 135

rcInvalidPageHeaderGen pageHeaderGen is incorrect or not supported 136

rcTooManyCalledSubscribers The number of called subscribers exceeds the
limit

137

rcInvalidFaxNumber faxNumber is incorrect 138

rcInvalidSubAddressNumber subAddressNumber is incorrect 139

rcInvalidFaxProtocol faxProtocol is incorrect or not supported 140

rcInvalidOrderingData orderingData is incorrect or not supported 141

rcInvalidRequestPriority requestPriority is incorrect or not supported 142

rcInvalidRetryCount retryCount is incorrect or not supported 143

Salutation Architecture Specification V2.0c Part-2

91 06/01//99

Sample protocol sequences are provided below.

Example Protocol Sequence (1)

Client Server

SendFAX(..., modeOfDataTransfer=delayed, dataSource=client, DataHandle, ...) =>

<= ACK(JobHandle)

COMMAND is enqueued in the Job Queue.

:

COMMAND is dequeued from the Job Queue.

--- Data Transfer Message Sequence Start ---

<= RequestDataTransfer(DataHandle)

DataBlockDescription(...) =>

<= RequestNextData

TransferDataBlock(Begin, End, Last) =>

<= ACK(NULL)

--- Data Transfer Message Sequence End ---

Client Server

--- Data Transfer Message Sequence Start ---

SendFAX(..., modeOfDataTransfer=immediate, dataSource=client, ...) =>

<= RequestDataTransfer()

DataBlockDescription(...) =>

<= RequestNextData

TransferDataBlock(Begin, End, Last) =>

<= ACK(JobHandle)

--- Data Transfer Message Sequence End ---

COMMAND is enqueued in the Job Queue.

Client Server

SendFAX(..., dataSource=functionalUnit, DataHandle, ...) =>

<= ACK(JobHandle)

Salutation Architecture Specification V2.0c Part-2

92 06/01//99

Example Protocol Sequence (2)

Client Server

SendFAX(..., jobStatusNotificationMode={{completed, error}, FALSE}, ...) =>

<= ACK(JobHandle)

:

<= NotifyJobStatus(JobHandle, completed)

ACK(NULL) =>

Client Server

SendFAX(..., jobStatusNotificationMode={{completed, error}, TRUE}, ...) =>

<= ACK(JobHandle)

:

<= NotifyJobEntryStatus(JobHandle, JobEntryID, completed)

ACK(NULL) =>

:

<= NotifyJobEntryStatus(JobHandle, JobEntryID, completed)

ACK(NULL) =>

:

Client Server

SendFAX(..., jobStatusNotificationMode={{}}, ...) =>

<= ACK(JobHandle)

:

QueryJobStatus(JobHandle) =>

<= ACK(completed)

Example Protocol Sequence (3)

Client Server

SendFAX(...) =>

<= NACK(ReturnCode)

Salutation Architecture Specification V2.0c Part-2

93 06/01//99

Example Protocol Sequence (4)

Client Server

SendFAX(...) =>

<= ACK(JobHandle)

:

ChangeJobAttribute(JobHandle, ...) =>

<= ACK(NULL)

Client Server

SendFAX(...) =>

<= ACK(JobHandle)

:

ChangeJobEntryAttribute(JobHandle, JobEntryID, ...) =>

<= ACK(NULL)

Example Protocol Sequence (5)

Client Server

SendFAX(...) =>

<= ACK(JobHandle)

:

CancelJob(JobHandle, ...) =>

<= ACK(NULL)

Client Server

SendFAX(...) =>

<= ACK(JobHandle)

:

CancelJobEntry(JobHandle, JobEntryID, ...) =>

<= ACK(NULL)

2.3.3.2. Attribute Operations
The following command and response are used for attribute controls. The usage of those
commands and responses are described in "Attribute Repository Messages" section on page
30.

� [Fax Data Send] FU Mandatory support common command

� GetPrivateAttribute

� GetGlobalAttribute

Salutation Architecture Specification V2.0c Part-2

94 06/01//99

� SetPrivateAttribute

� ACK and NACK

Attributes affected by the above commands are listed in "List of Functional Unit Attributes" section.

2.3.3.3. Dynamic Status Operations
Dynamic Status operations allow a client to know the aspect of Functional Unit and the transition in
the aspects. Dynamic Status Parameter describes the aspects. A client may query the current
values of Dynamic Status Parameter, and request [Fax Data Send] to notify an Event when any
transition occurs in the values of Dynamic Status Parameter.

The following commands and response are used for dynamic status operations. The usage of
those commands and responses are described in "Dynamic Status Messages" section on page
49.

� [Fax Data Send] FU Mandatory support common command

� QueryDynamicStatus

� ACK and NACK

� [Fax Data Send] FU Optional support common command

� SubscribeEvent, UnsubscribeEvent and NotifyEvent (These commands belong to the
same Optional group, so an FU must support all these commands if it supports them.)

The following Dynamic Status Parameters are defined for [Fax Data Send] Functional Unit.

Dynamic Status Parameter Query Event ID Description

FaxSendStatus Yes Yes 12000 status of FAX equipment at sending side.

FaxSendFreeStorageSize Yes No 12001 storage size available for spool.

FaxSendErrorStatus Yes No 12002 the detail error status information.

Data Type of Dynamic Status Parameter

FaxSendStatus ::= ENUMERATED
{

powerFailure (0),
warmingUp (1),
offline (2),
ready (3),
sending (4),
receiving (5),
error (6),
others (127)

}

FaxSendFreeStorageSize ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

95 06/01//99

FaxSendErrorStatus ::= SEQUENCE
{

systemError [0] DisplayString, -- detail description
others [1] DisplayString-- detail description

}

2.3.3.4. Job Related Operations
[Fax Data Send] FU supports job entry operation since multiple destinations can be specified in
single SendFAX command. A client application can control the way of executing a job or job entry,
and also know the status of the job or job entry execution. The usage of those commands and
responses are described in "Job-Related Messages" section on page 33.

[Fax Data Send] FU specific job status transition is as follows:

When data transfer from a client to sending [Fax Data Send] FU is completed, the job status
becomes “Queued”.

When one of job entry is started, to be sent to the receiving Fax, the job status becomes
“Started”, and when ALL job entries are sent, the job status becomes “Completed”.

2.3.3.4.1. Controlling Job execution

[Fax Data Send] Functional Unit defines requestPriority and retryCount attribute as Job Control
Attributes. The following commands may be used to change the value of the attributes or cancel a
job or job entry.

� [Fax Data Send] FU Mandatory support common command

� CancelJob

� FreeJobHandle

� ChangeJobAttribute and

� ACK and NACK

� [Fax Data Send] FU Optional support common command

� CancelJobEntry

� ChangeJobEntryAttribute

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

2.3.3.4.2. Job Status Notification

[FAX Data Send] Functional Unit provides flexible ways for a client to know the status or the result
of Print Service request. Refer to "Job Status Notification" section on page 34.

The following commands and responses are used for job status notification.

� [Fax Data Send] FU Mandatory support common command

� QueryJobStatus

� ACK and NACK

Salutation Architecture Specification V2.0c Part-2

96 06/01//99

� [Fax Data Send] FU Optional support common command

� NotifyJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the
same Optional command Group, so an FU must support all these commands if it supports
them.

� QueryJobEntryStatus

� NotifyJobEntryStatus

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

2.3.3.4.3. Job Suspend/Resume

[Fax Data Send] Functional Unit supports the following commands to suspend/resume jobs
submitted by “SendFAX” command.

� [Fax Data Send] FU Mandatory support common command

� SuspendJob

� ResumeJob

� [Fax Data Send] FU Optional support common command

� SuspendJobEntry

� ResumeJobEntry

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

2.3.3.4.4. Job Status Monitor Start/Cancel

[Fax Data Send] Functional Unit supports the following commands to start/cancel job-status-
monitoring.

� [Fax Data Send] FU Optional support common command

� StartMonitorJobStatus

� CancelMonitorJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the
same Optional command Group, so an FU must support all these commands if it supports
them.

2.3.3.4.5. List FU Job Status

� [Fax Data Send] FU Mandatory support command

� ListFaxJob

� ACK and NACK

Salutation Architecture Specification V2.0c Part-2

97 06/01//99

ListFaxJob Command

ListFaxJob command is used to get the list of job in the [Fax Data Send] Functional Unit.

ASN.1 Syntax Definition

ListFaxtJob ::= [APPLICATION tagListFaxtJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}

Data transferred by TransferDataBlock command is as follows.

FaxJobList ::= SET OF FaxJobDescription

FaxJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
requesterUserId [1] UserID,

-- "UserID" is set from the "UserID" specified in the Open Service
-- request that has established a service session. Therefore, a client
-- application must have registered as a [Client] FU to actually
-- specify its "User ID" value so that it appears in the JobList.

jobStatusCode [2] JobStatusCode,
dataSize [3] INTEGER OPTIONAL,
numOfJobEntries [4] INTEGER OPTIONAL

}

2.3.3.4.6. Job-Specific Reason Code

The following job-specific reason codes are defined to indicate the specific error conditions. The
reason code supplements JobStatusCode that represents overall job status, e.g., completed,
queued, suspended, and is an optional parameter present only when JobStatusCode is suspended
or error. Refer to "Data Type Definition" on page 198 for the complete definition of the
JobStatusCode.

The reason codes will be returned in a NotifyJobStatus, a NotifyJobEntryStatus, or an ACK
response to QueryJobStatus or QueryJobEntryStatus Command.

Salutation Architecture Specification V2.0c Part-2

98 06/01//99

Name Description ReasonCode

timeOut time-out detected during get-line. (When zero is
specified in retryCount)

128

retryOut terminated due to retry out. (When zero is
specified for retryCount, this parameter is not
returned. Instead calledSubscriberBusy or
timeOut is returned,)

129

calledSubscriberBusy busy status detected for called subscriber. 130

modemShiftDownFailed connection failed with the lowest speed. 131

callSetUpFailed call setup failed. 132

negotiationFailed negotiation failed. 133

notReceiveExpectedFrame expecting frame(s) not received on G3 protocol. 134

receiveUnexpectedFrame unexpected frame(s) received on G3 protocol. 135

thirdTryFail retried-out during G3 protocol. 136

waitingForRetry in waiting mode for retry. 137

2.4. [DOC Storage] Functional Unit

2.4.1. Overview
[DOC Storage] Functional Unit is used as a temporary spooling storage for document data
(handled by scanning, printing and Faxing operation) and non-document data like file data
(handled as application data or executable code). It provides a client with simple access methods
to temporary spooling storage, and defines minimum functions for the purpose. [DOC Storage]
Functional Unit abstracts a container of document and file data as folder, and may contain more
than one folders. Implementation of [DOC Storage] Functional Unit can be typically found in a
facsimile machine, copier, printing equipment, or for storage of file data like device drivers,
application data, and so on.

The following figure illustrates a configuration model to understand how [DOC Storage] Functional
Unit works with other resources within equipment and with remote clients who issue service
requests.

Salutation Architecture Specification V2.0c Part-2

99 06/01//99

physical
storage

Salutation Fax/Copier (Server)

Image Document
or File Folder

Mailbox

Virtual
Storage
Manager

Equipment local applications

[DOC storage] functional unit

scan, fax receive, operator panel, ..Local
file system

Doc
Manager
Formatter

Message
Processor
(Front End)

Attribute
Repository

Other functional unit

[Print] [Fax Data Send]

Read received fax doc
from Mailbox

LAN attached PC (Client)

Put document
for someone else
to poll / restore later

Peer Fax Machine (Client)

(TBD)

Initial Scope
 of Architecture

Retrieve

Store

Polling

 [DOC Storage] Functional Unit provides the interface for a remote client to store and retrieve
document and file data. Data source in "document storing" service and data destination in
"document retrieval" service are "client applications" by default. The data source/destination can
be other than clients when the data source/destination attributes are explicitly set.

[DOC Storage] Functional Unit may share incoming/outgoing image document and/or file data with
other Functional Units or local applications within equipment via a local file system. Client
applications can request document/file data exchange among those local Functional Units by using
the procedure defined in "Document Systems Overview" section. However, it is not the scope of
this architecture to define the mechanism how [DOC Storage] interfaces with the local file system.
Some examples of interworking between and other Functional Units/applications are :

� scanning document → [DOC Storage] → PC, FAX, Printing equipment

� received document at FAX → [DOC Storage] → PC, FAX, Printing equipment

� generated document in PC → [DOC Storage] → FAX, Printing equipment

� file data → [DOC Storage] → [Client] FU

[DOC Storage] Functional Unit is considered to be composed of the following logical sub-
components or service elements.

� Front-end message processor

� Attribute Repository manager

� Document manager/formatter

� Virtual storage manager (directory manager)

Salutation Architecture Specification V2.0c Part-2

100 06/01//99

2.4.2. List of Functional Unit Attributes
The following table describes the attributes defined for [DOC Storage] Functional Unit, and
specifies what protocol data unit will use those attributes.

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private
Attribute

personalityProtocol 11000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No

supportedCommand 11001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No

dynamicStatusId 11002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No

readWriteCapability 11003 AccessMode SET OF AccessMode
(setIntDoesContain)

No No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
—checkInterval parameter
-- of a SubscribeEvent
—command

11004 N/A INTEGER
(intGreaterThanOrEqualTo)

No No

typeOfContent 11009 DataContent SET OF DataContent
(setIntDoesContain)

No No

modeOfStore 11010 DataStoreMode SET OF DataStoreMode
(setIntDoesContain)

Yes Yes

documentFormat 11011 DataFormat SET OF DataFormat
(setIntDoesContain)

No No

imageCompAlgorithm 11012 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No

imageByteFillOrder 11013 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No

imageResolution 11014 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No

dataLocationScheme 11030 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No

dataTransferTimeOutSettabl
e

11031 N/A BOOLEAN
(boolEqualTo)

No No

Salutation Architecture Specification V2.0c Part-2

101 06/01//99

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

11032 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
-- Global attribute indicates the
-- default length. If the global
-- attribute value is zero, the
-- default length is not fixed or
-- unknown.
-- If the private attribute value
is
-- set to zero, the FU should
-- wait as long as possible.
-- However, use of zero should
-- be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes
(No, if the
previous

attribute is
FALSE)

 “typeOfContent” determines the content of the stored data in the [DOC Storage] Functional Unit,
i.e. document or file data. If [DOC Storage] Functional Unit supports the file data type, it also
should support the fileMode of “modeOfStore”, so that the data is transparent for a client or a
[DOC Storage] Functional Unit.

"modeOfStore" determines the modes of operation on data, i.e., documentDataMode (non-
transparent) and fileMode (transparent). In non-transparent mode the document contents are
interpreted by a client and [DOC Storage] Functional Unit, and a data block boundary corresponds
to a page boundary in transmission. In transparent mode a block boundary if any does not
represent a page or meaningful boundary, and [DOC Storage] Functional Unit transmits a whole
data in a block.

Document related attributes must be distinguished from the document data descriptor associated
with document data. "documentFormat" attribute configures how [DOC Storage] Functional Unit
should handle a stored document. It is meaningful only when “dataDescriptor” in
DataBlockDescription is set to document .

When "modeOfStore" attribute is set to document mode (non-transparent mode), [DOC Storage]
Functional Unit refers to "documentFormat" attribute and becomes conscious of the stored
document format. For example, when "documentFormat" attribute is set to bi-level image stream
and "modeOfStore" attribute is set to document data mode (non-transparent mode), a stored
document is treated as a sequence of pages. When "modeOfStore" attribute is set to file mode
(transparent mode), [DOC Storage] Functional Unit becomes unconscious of the content of data
and does not refer document related attributes, and transmits the whole data to a client in a block
rather than multiple blocks.

2.4.3. Message & Protocol
This section describes service request protocol for [DOC Storage] Functional Unit under Salutation
Personality Protocol.

2.4.3.1. Document Control and Data Transfer Request
The following request procedures are defined for [DOC Storage] Functional Unit.

� Document Retrieval Request

� Document Storing Request

Salutation Architecture Specification V2.0c Part-2

102 06/01//99

� Document Copying and Moving Request

� Folder Creation Request

� Folder Deletion Request

� Folder Listing Request

� Document Listing Request

� Folder Descriptions Updating Request

� Document Descriptions Updating Request

The following commands and responses are used for the Document Control and Data Transfer Request
procedure to access a document. Abstract syntax definition of common protocol data unit and its usage for
document transfer procedure are described in either "Data Transfer Messages" section on page 18 or "
Document Transfer Procedure" section on page 69.

� [DOC Storage] FU Mandatory support Command

� RetrieveDoc

� StoreDoc

� ListFolder

� ListFolderDoc

� [DOC Storage] FU Optional support Command

� DeleteDoc, CopyDoc, MoveDoc, ChangeDocDesc, CreateFolder, DeleteFolder,
and ChangeFolderDesc (These commands belong to the same optional group, so an FU
must support all these commands if it supports.)

� [DOC Storage] FU Mandatory support common Command

� RequestDataTransfer

� DataBlockDescription

� TransferDataBlock

� RequestNextData

� ACK and NACK

� [DOC Storage] FU Optional support Command

� VendorEscape

Sample protocol sequences for each command request procedures and abstract syntax definition
of each command are provided in each chapter.

Salutation Architecture Specification V2.0c Part-2

103 06/01//99

2.4.3.1.1. Document Retrieval Request

Example Protocol Sequence (1)

Client Server

RetrieveDoc(..., dataDestination=client) =>

<= DataBlockDescription

RequestNextData =>

<= TransferDataBlock

ACK(NULL) =>

Example Protocol Sequence (2)

Client Server

RetrieveDoc(..., dataDestination=exportPool) =>

<= ACK(DataHandle)

Example Protocol Sequence (3)

Client Server

RetrieveDoc(...) =>

<= NACK(ReturnCode)

RetrieveDoc Command

RetrieveDoc command is used to retrieve a document from a certain folder managed by [DOC
Storage] Functional Unit. Prior to this request, client may get information of the target document
and the folder containing it by executing "List Document" command request procedure.

By default, documents are transferred to the client by using document transfer procedure
described in "Document Systems Overview" section. When data destination parameter is set to
the Export Pool, the document is prepared for access by other Functional Unit, and export data
handle is returned in ACK response.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

104 06/01//99

RetrieveDoc ::= [APPLICATION tagRetrieveDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID,
dataDestination [2] DataLocation DEFAULT client,
startDataBlock [3] INTEGER DEFAULT 1,

-- If omitted, the document is retrieved
-- from the first data block.

endDataBlock [4] INTEGER OPTIONAL
-- If omitted, the document is retrieved
-- through the last data block.

}

ACK Response

Indicates that RetrieveDoc command request is successfully processed. If Export Pool is specified
as the data destination, Export DataHandle is returned.

Parameter Name Data Type Note

parameter1 DataHandle Optional

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

rcInvalidDataDestination dataDestination is incorrect or not supported 131

rcInvalidStartDataBlock startDataBlock is incorrect 132

rcInvalidEndDataBlock endDataBlock is incorrect 133

Salutation Architecture Specification V2.0c Part-2

105 06/01//99

2.4.3.1.2. Document Storing Request

Example Protocol Sequence (1)

Client Server

StoreDoc(..., dataSource=client, ...) =>

<= RequestDataTransfer()

DataBlockDescription =>

<= RequestNextData

TransferDataBlock =>

<= ACK(DocumentID)

Example Protocol Sequence (2)

Client Server

StoreDoc(DataHandle, ... , dataSource=functionalUnit, ...) =>

<= ACK(DocumentID)

Example Protocol Sequence (3)

Client Server

StoreDoc(...) =>

<= NACK(ReturnCode)

StoreDoc Command

StoreDoc command is used to store a document into a certain folder managed by [DOC Storage]
Functional Unit.

By default, documents are transferred from the client by using document transfer procedure
described in "Document Systems Overview" section. When data source parameter is set to
another Functional Unit, the document is transferred from the Export Pool of the specified
Functional Unit before ACK response is returned to the client.

The [DOC Storage] Functional Unit stores the data transferred by the Data Transfer Message
Sequence as follows:

�� When the modeOfStore is “documentDataMode”

 The boundaries of the data blocks of transferred data are preserved. This mode is to be used
in Non-Transparent Mode.

Salutation Architecture Specification V2.0c Part-2

106 06/01//99

�� When the modeOfStore is “fileMode”

The data blocks of transferred data are merged into a single data block. This mode is to be
used in Transparent Mode.

ASN.1 Syntax Definition

StoreDoc ::= [APPLICATION tagStoreDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Exists only if dataSource = Functional Unit
modeOfStore [3] DataStoreMode OPTIONAL,

-- Override Global / Private Attribute
inputDocumentFormat [4] DocumentDataDescriptor OPTIONAL,

-- Present if and only if dataSource = url
ownerName [5] OwnerName OPTIONAL,
docComment [6] DocComment OPTIONAL,
typeOfContent [7] DataContent OPTIONAL

}

ACK Response

Indicates that StoreDoc command request is successfully processed. Document ID is returned.

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcAccessRejected access is not authorized for the user 130

rcInvalidDataSource dataSource is incorrect or not supported 131

rcInvalidDataHandle dataHandle is unknown 132

rcInvalidModeOfStore modeOfStore is incorrect or not supported 133

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

134

rcStorageFull storage is full 135

rcInvalidTypeOfContent typeOfContent is incorrect or not supported 136

Salutation Architecture Specification V2.0c Part-2

107 06/01//99

2.4.3.1.3. Document Deleting Request

Example Protocol Sequence (1)

Client Server

DeleteDoc(...) =>

<= ACK(NULL)

Example Protocol Sequence (2)

Client Server

DeleteDoc(...) =>

<= NACK(ReturnCode)

DeleteDoc Command

DeleteDoc command is used to explicitly remove a document.

ASN.1 Syntax Definition

DeleteDoc ::= [APPLICATION tagDeleteDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID

}

ACK Response

Indicates that DeleteDoc request is successfully processed. No parameter is returned.

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

Salutation Architecture Specification V2.0c Part-2

108 06/01//99

2.4.3.1.4. Document Copying Request

Example Protocol Sequence (1)

Client Server

CopyDoc(...) =>

<= ACK(DocumentID)

Example Protocol Sequence (2)

Client Server

CopyDoc(...) =>

<= NACK(ReturnCode)

CopyDoc Command

CopyDoc command is used to copy a document within a storage maintained by [DOC Storage]
Functional Unit. This operation allows a client to copy a document without transferring a document
by using RetrieveDoc and StoreDoc command.

ASN.1 Syntax Definition

CopyDoc ::= [APPLICATION tagCopyDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
sourceFolder [0] FolderID,
documentId [1] DocumentID,
destinationFolder [2] FolderID OPTIONAL,

-- if omitted, the same as sourceFolder
updateDateTime [3] BOOLEAN DEFAULT FALSE

-- if TRUE, update the document’s
-- creationDateTime with the current time.
-- if FALSE or omitted, use the document’s
-- old creationDateTime.

}

ACK Response

Indicates that CopyDoc command request is successfully processed. Document ID for a new
document is returned.

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Salutation Architecture Specification V2.0c Part-2

109 06/01//99

Name Description ReturnCode

rcInvalidSourceFolderId sourceFolder is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcSourceAccessRejected access to the source folder/document is not
authorized for the user

130

rcInvalidDestinationFolderId destinationFolder is unknown 131

rcDestinationAccessRejected access to the destination folder is not authorized
for the user

132

2.4.3.1.5. Document Moving Request

Example Protocol Sequence (1)

Client Server

MoveDoc(...) =>

<= ACK(DocumentID)

Example Protocol Sequence (2)

Client Server

MoveDoc(...) =>

<= NACK(ReturnCode)

MoveDoc Command

MoveDoc command is used to move a document to another folder within a storage maintained by
[DOC Storage] Functional Unit. This operation allows a client to move a document without
transferring a document by using RetrieveDoc, StoreDoc and DeleteDoc command.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

110 06/01//99

MoveDoc ::= [APPLICATION tagMoveDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
sourceFolder [0] FolderID,
documentId [1] DocumentID,
destinationFolder [2] FolderID OPTIONAL,

-- if omitted, the same as sourceFolder
updateDateTime [3] BOOLEAN DEFAULT FALSE

-- if TRUE, update the document’s
-- creationDateTime with the current time.
-- if FALSE or omitted, use the document’s
-- old creationDateTime.

}

ACK Response

Indicates that MoveDoc command request is successfully processed. Document ID for a new
document is returned.

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Name Description ReturnCode

rcInvalidSourceFolderId sourceFolder is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcSourceAccessRejected access to the source folder/document is not
authorized for the user

130

rcInvalidDestinationFolderId destinationFolder is unknown 131

rcDestinationAccessRejected access to the destination folder is not authorized
for the user

132

2.4.3.1.6. Document Descriptions Updating Request

Example Protocol Sequence (1)

Client Server

ChangeDocDesc(...) =>

<= ACK(NULL)

Salutation Architecture Specification V2.0c Part-2

111 06/01//99

Example Protocol Sequence (2)

Client Server

ChangeDocDesc(...) =>

<= NACK(ReturnCode)

ChangeDocDesc Command

ChangeDocDesc command is used to update the descriptions associated with a document.

ASN.1 Syntax Definition

ChangeDocDesc ::= [APPLICATION tagChangeDocDesc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID,
ownerName [2] OwnerName OPTIONAL,
docComment [3] DocComment OPTIONAL

}

ACK Response

Indicates that ChangeDocDesc request is successfully processed. No parameter is returned.

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

Salutation Architecture Specification V2.0c Part-2

112 06/01//99

2.4.3.1.7. Folder Creation Request

Example Protocol Sequence (1)

Client Server

CreateFolder(...) =>

<= ACK(FolderID)

Example Protocol Sequence (2)

Client Server

CreateFolder(...) =>

<= NACK(ReturnCode)

CreateFolder Command

CreateFolder command is used to create a folder in a storage maintained by [DOC Storage]
Functional Unit.

ASN.1 Syntax Definition

CreateFolder ::= [APPLICATION tagCreateFolder] SEQUENCE
{

COMPONENTS OF MsgHeader,
ownerName [0] OwnerName OPTIONAL,
folderComment [1] FolderComment OPTIONAL

}

ACK Response

Indicates that CreateFolder command request is successfully processed. FolderID for a new
document is returned.

Parameter Name Data Type Note

parameter1 FolderID

NACK Response

Indicates that CreateFolder command request is rejected. There is no message specific return
code.

Default Public Folder

A folder of which “Folder ID” equals to 0 (Zero) is defined for special purpose folder, called Default
Public Folder. Default Public Folder is useful when a client just needs to temporarily store a

Salutation Architecture Specification V2.0c Part-2

113 06/01//99

document into DOC Storage without restrictive access control. A client usually locate a folder prior
to storing a document by issuing ListFolder or CreateFolder command. Default Public Folder allows
a client to store a document without these steps, since it is well-known to the client. Default Public
Folder has the following characteristics:

�� There is no restrictive access control to the Default Public Folder.

�� ChangeFolderDesc and DeleteFolder command cannot be used against the Default Public
Folder.

�� ownerName, creationDateTime and description of the Default Public Folder is implementation
dependent.

�� The provision of Default Public Folder by [DOC Storage] FU depends on FU implementation.
If not implemented, an attempt to store a document to Default Public Folder is simply rejected
with the return code of rcFolderNotFound.

�� When a [DOC Storage] FU implementation does not provide Default Public Folder, it shall
never return FolderID=0 in response to a CreateFolder command.

Example Protocol Sequences

Client Server

-- to use of ListFolderDoc and then StoreDoc with explicit Folder ID

ListFolderDoc(...) =>

<= TransferDataBlock(a list of folders)

-- to find a folder to use

StoreDoc(...) =>

-- to use of CreateFolder and then StoreDoc with explicit Folder ID

CreateFolder(...) =>

<= ACK(FolderID)

StoreDoc(...) =>

-- to use of Default Public Folder

StoreDoc(., folderId=0, ...) =>

Salutation Architecture Specification V2.0c Part-2

114 06/01//99

2.4.3.1.8. Folder Description Updating Request

Example Protocol Sequence (1)

Client Server

ChangeFolderDesc(...) =>

<= ACK(NULL)

Example Protocol Sequence (2)

Client Server

ChangeFolderDesc(...) =>

<= NACK(ReturnCode)

ChangeFolderDesc Command

ChangeFolderDesc command is used to update the descriptions associated with a folder.

ASN.1 Syntax Definition

ChangeFolderDesc ::= [APPLICATION tagChangeFolderDesc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
ownerName [1] OwnerName OPTIONAL,
folderComment [2] FolderComment OPTIONAL

}

ACK Response

Indicates that command request is successfully processed. No parameter is returned.

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

Salutation Architecture Specification V2.0c Part-2

115 06/01//99

2.4.3.1.9. Folder Deletion Request

Example Protocol Sequence (1)

Client Server

DeleteFolder(...) =>

<= ACK(NULL)

Example Protocol Sequence (2)

Client Server

DeleteFolder(...) =>

<= NACK(ReturnCode)

DeleteFolder Command

DeleteFolder command is used to delete a folder which does not hold any document.

ASN.1 Syntax Definition

DeleteFolder ::= [APPLICATION tagDeleteFolder] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

-- Folder should be empty before deleted.
}

ACK Response

Indicates that command request is successfully processed. No parameter is returned.

No parameter

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

rcFolderNotEmpty folder contains document(s) 131

Salutation Architecture Specification V2.0c Part-2

116 06/01//99

2.4.3.1.10. Folder Listing Request

Example Protocol Sequence (1)

Client Server

ListFolder(...) =>

<= TransferDataBlock

ACK(NULL) =>

Example Protocol Sequence (2)

Client Server

ListFolder(...)=>

<= NACK(ReturnCode)

ListFolder Command

ListFolder command is used to get a list of folders managed by [DOC Storage] Functional Unit.

The list is transferred from the [DOC Storage] Functional Unit to the client by using a Data Transfer
Message Sequence as follows:

The list of folders is transferred as “data” consisting of one data block which may be split into
multiple data block segments. Each data block segment is of FolderList data type which is
defined as SET OF FolderDescription as shown below. For example, if the [DOC Storage]
Functional Unit contains 900 folders, the description of the first 300 folders may be sent in the
first data block segment, that of the next 300 folders in the 2nd data block segment, and that
of the last 300 folders in the last data block segment. Although each data block segment
contains only a part of the whole folders set, the receiving application can decode (according
to the BER) each data block segment without waiting for the next data block segment.

ASN.1 Syntax Definition

ListFolder ::= [APPLICATION tagListFolder] SEQUENCE
{

COMPONENTS OF MsgHeader
}

FolderList ::= SET OF FolderDescription

Salutation Architecture Specification V2.0c Part-2

117 06/01//99

FolderDescription ::= SEQUENCE
{

folderId [0] FolderID,
ownerName [1] OwnerName OPTIONAL,
folderComment [2] FolderComment OPTIONAL,
createDateTime [3] DisplayString OPTIONAL,
usedSize [4] INTEGER OPTIONAL,

-- size in bytes occupied by the documents in this folder
freeSize [5] INTEGER OPTIONAL,

-- size in bytes of free area in this folder
numberOfDocuments [6] INTEGER OPTIONAL

}

ACK Response

Indicates that command request is successfully processed. No parameter is returned.

NACK Response

Indicates that ListFolder command request is rejected. There is no message specific return code.

2.4.3.1.11. Document Listing Request

Example Protocol Sequence (1)

Client Server

ListFolderDoc(...) =>

<= TransferDataBlock

ACK(NULL) =>

Example Protocol Sequence (2)

Client Server

ListFolderDoc(...)=>

<= NACK(ReturnCode)

ListFolderDoc Command

ListFolderDoc command is used to get a list of documents stored in a certain folder managed by
[DOC Storage] Functional Unit.

The list is transferred from the [DOC Storage] Functional Unit to the client by using a Data Transfer
Message Sequence as follows:

The list of documents is transferred as “data” consisting of one data block which may be split
into multiple data block segments. Each data block segment is of DocList data type which is

Salutation Architecture Specification V2.0c Part-2

118 06/01//99

defined as SET OF DocDescription as shown below. For example, if the specified folder of
the [DOC Storage] Functional Unit contains 900 documents, the description of the first 300
documents may be sent in the first data block segment, that of the next 300 documents in the
2nd data block segment, and that of the last 300 documents in the last data block segment.
Although each data block segment contains only a part of the whole documents set, the
receiving application can decode (according to the BER) each data block segment without
waiting for the next data block segment.

ASN.1 Syntax Definition

ListFolderDoc ::= [APPLICATION tagListFolderDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

}

DocList ::= SET OF DocDescription

DocDescription ::= SEQUENCE
{

documentId [0] DocumentID,
ownerName [1] OwnerName OPTIONAL,
docComment [2] DocComment OPTIONAL,
createDateTime [3] DisplayString OPTIONAL,
size [4] INTEGER OPTIONAL,

-- size in bytes of this document
numberOfBlocks [5] INTEGER OPTIONAL,

-- size in blocks that may be useful in RetrieveDoc to specify
-- startDataBlock and endDataBlock parameter.

typeOfContent [6] DataContent OPTIONAL
}

ACK Response

Indicates that command request is successfully processed. No parameter is returned.

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

2.4.3.2. Attribute Operations
The following command and response are used for attribute control. The usage of those
commands and responses are described in "Attribute Repository Messages" section on page
30.

� [DOC Storage] FU Mandatory support common Command

� GetPrivateAttribute

Salutation Architecture Specification V2.0c Part-2

119 06/01//99

� GetGlobalAttribute

� SetPrivateAttribute

� ACK and NACK

Attributes affected by the above commands are listed in "List of Functional Unit Attributes" section.

2.4.3.3. Dynamic Status Operations
Dynamic Status operations allow a client to know the aspect of Functional Unit and the transition in
the aspects. Dynamic Status Parameter describes the aspects. A client may query the current
values of Dynamic Status Parameter, and request [Fax Data Send] to notify an Event when any
transition occurs in the values of Dynamic Status Parameter.

The following commands and response are used for dynamic status operations. The usage of
those commands and responses are described in "Dynamic Status Messages" section on page
49.

� [DOC Storage] FU Mandatory support Command

� QueryDynamicStatus

� ACK and NACK

� [DOC Storage] FU Mandatory support Command

� SubscribeEvent, UnsubscribeEvent, and NotifyEvent (These commands belong to the
same Optional Group, so an FU must support all these commands if it supports them.)

The following Dynamic Status Parameter is defined for [DOC Storage] Functional Unit. A client
may query the current values of Dynamic Status Parameter, or request [DOC Storage] to notify an
Event when any transition occurs in the values of Dynamic Status Parameter.

Dynamic Status Parameter Query Event ID Description

FreeStorageSize Yes No 11000 available storage size.

OperatorIntervention No Yes 11001 a warning message to operator or administrator to
request human intervention

OperatorInformation No Yes 11002 an informational message to operator or
administrator

Data Type of Dynamic Status Parameter

FreeStorageSize ::= INTEGER

OperatorIntervention ::= SEQUENCE
{

requiredAction [0] DisplayString
}

Salutation Architecture Specification V2.0c Part-2

120 06/01//99

OperatorInformation ::= SEQUENCE
{

information [0] DisplayString
}

2.5. [Fax Data] Functional Unit
This Functional Unit is newly introduced in V2.0 to enhance a facsimile service in addition to the
services provided by [FAX Data Send] Functional Unit. The enhancement focuses on enabling a
user to receive a Receipt Notification and Receipt Confirmation when receiving or transmitting a
document over T.30 protocol. Here the overview is described. Refer to SLA V2.0 Part-2 Addendum
for the complete specification.

2.5.1.1. Overview
[FAX Data Send] Functional Unit of the initial SLA release provides a PC(A) to request a fax
transmission to another fax, FAX(D), over standard facsimile protocol such as T.30. A fax at
receiving end, FAX(D), may be unaware of a Salutation Architecture, but simply print or receive
image data from FAX(C) which is equipped with [FAX Data Send] Functional Unit.

On the other hand, [Fax Data] Functional Unit is introduced into both sending and receiving end,
and aware of Salutation Architecture. There are two problems to be solved by introducing [Fax
Data] Functional Unit. One is that a client at receiving end has to walk down to a fax equipment to
see whether something was faxed to him/her. Second, a client at sender side can not know
whether a recipient received the faxed data.

Service Request
mapped on G3DPPC

[B]

PC
[A])

Fax
[C]

Fax
[D]

PC
[E]

DPPC
[F]

The following describes sample scenarios of the extensions to the current model.

� A client on PC(A) requests [Fax Data] Functional Unit on FAX(C) to fax a document to
FAX(D). At the request the client specifies that FAX (D) should notify the receipt completion of
the document to PC(E). The notification may be in e-mail or a text message on PC screen.
"Receipt Notification” is handled by [Fax Data] Functional Unit of FAX(D).

� When a client on PC(E) accesses the faxed data, “Receipt Confirmation” will be delivered
from FAX(D) to FAX(C), and then FAX(C) to PC(A).

In these scenarios data to be transmitted over PSTN could be FAX image data or binary data.

Control information is exchanged between FAX(C) and FAX(D) in addition to data. Necessary
protocol will be defined based on standard facsimile protocol.

Salutation Architecture Specification V2.0c Part-2

121 06/01//99

3. Voice Message Systems
The Voice Message Systems provide a framework not only for storing/exchanging human voice
but also for message exchanging between office equipment and persons. In other words, office
equipment are regarded as messaging clients in this framework. These messages reach
appropriate persons via telephone sets, portable phones or PC speakers.

For example, a fax sends a voice message that it succeeded/failed in sending documents to the
person who initiated the job. This allows him/her not to wait in front of the equipment until all the
sheets are processed. After putting a stack of sheets, you can ask a copier to notify via telephone
when it finishes copying or it had a paper jam.

This kind of systems include three functions:

1. Non-PC/telephone equipment to PC/telephone messaging,

2. PC/telephone to PC/telephone messaging and

3. PC/telephone to non-PC/telephone equipment messaging.

The first two are included in the scope of the Architecture. Voice Message Systems are designed
as a framework for the first two functions. Services and attributes of Voice Messaging Systems
Functional Unit for the first function will be first defined. The definition will be extended to include
the second function in a later release of the architecture.

Voice Message Systems Functional Units will be defined as a common functional model by
abstracting broad ranges of Voice/Messaging equipment and by identifying a set of attributes
associated with the model. This approach may allow an end user to access to the various
size/capability of equipment and to use suitable equipment by capability exchange.

These Functional Units will be coherent with other systems of the Salutation Architecture, namely
Document System and Personal Information Systems. This allows voice messages to be
processed in the same way as other type of messages, text or images. Namely this allows the
Voice Message Systems Functional Units to work as a part of unified mail systems cooperating
with Fax mail and electronic mail systems.

PBX may be controlled together with this Voice Message Systems Functional Unit in order to
implement above applications. Salutation endorses existing and on-going standards for PBX
control. Versit and CSTA of ECMA are included in those. The design will also exploit CMC
(Common Messaging Call) definition of folders. It defines services of Functional Units and the
attributes of the services.

The following sections describe Voice Message Systems based on the above directions. Portable
phones will extend the range of applications of the Voice Message Systems Functional Units.
Related Functional Units to them are for further study.

3.1. Voice Message Systems Overview
In today’s office, telephone is one of the most used and important equipment for people to
communicate with each other. While you are traveling, it is often the only way. If you cannot get
hold of the person you want to talk to, you can leave a voice message at the called telephone in
many cases. You can even listen to such messages left for you from another telephone anytime
anywhere. With the integration of computer and telephony, other possibilities are rapidly

Salutation Architecture Specification V2.0c Part-2

122 06/01//99

expanding. In fact, what people need to do and are doing to perform day-to-day business with
someone else or in a team is the exchange of voice messages, if not documents.

This section addresses services related to voice messages. In this section, the objective of the
architecture is to define a standard for applications to provide/use voice message related services
to/of another equipment/applications. The goal is to enhance productivity of end users by
Salutation Voice Message Systems - the systems that provide voice message related services by
implementing the architecture.

3.1.1. Architecture of Salutation Voice Message Systems
Salutation Voice Message Systems are connected to clients via a telephone network (and/or PBX)
and a data network. Voice messages are transferred through either/both of them. A message from
a client is generated not only by persons but also by office equipment.

Voice Message Systems should be coherent with the Document Systems in the Salutation
Architecture. That is, Voice Message Systems must be manipulated in the same manner as the
Document Systems. This enables both the systems to cooperate to construct a unified mail
system. Media conversion technology would allow closer unification of Voice Message Systems
and Document Systems.

[DOC Storage] Function Unit corresponds to Voice Storage Systems Functional Units. Therefore,
the structure of folders in the Voice Message Systems Functional Units could be the same
structure as it, of course more powerful and/or complicated structures could be implemented by
using commands to the Voice Message Systems Functional Unit.

The following figure illustrates a typical configuration of Salutation Voice Message Systems and
outlines.

 Client
(Person/Equipment) Data

Network

Server

Third
Party

Telephone
Network
or PBX

 Client
(Person/Equipment)

Service Requests
- Create, delete, and list folders
- Store, send, and retrieve voice messages
- Manipulation of voice messages
- Control of currently active voice messages

Voice Message
 Storage

Client

�� The following Functional Unit is defined in Version 2.0 for the Salutation Voice Message
Systems:

 � [Voice Message Storage]

Salutation Architecture Specification V2.0c Part-2

123 06/01//99

 Clients dynamically store/retrieve/delete voice messages to/from this Functional Unit.
The storage may be partitioned into several voice message folders.

�� A Salutation Voice Message server provides services to clients through either telephone
network (e.g. POTS - Plain Old Telephone System -, ISDN, PBX) or data network (e.g. LAN),
or both.

�� A data network usually provides only data channel. A telephone network always provides
voice channel, and may optionally provide data channel. Equipment at both ends must be
properly equipped to utilize the data channel in telephone network (e.g. ISDN, voice and data
multiplexing technologies).

�� The same Salutation Voice Message server may provide a different set of services for voice
data transmission over data channel and voice channel to clients.

�� Voice messages are transferred between equipment either as "audio" through a voice channel
(as you hear a voice message from a telephone answering machine over an ordinary
telephone), or as digitized audio data over data channel (which may be played back after
digital to analog conversion at the target equipment).

�� Some Salutation Voice Message services do not conclude between a Salutation client and a
Salutation server, but involve the third-party telephone equipment. An example of such
service is that a Salutation client puts a voice message into Salutation server and a list of
telephone numbers to request the server to distribute the message to multiple persons.

�� Even if a Salutation client and a Salutation server are connected only through a voice channel,
a limited Salutation Voice Message Systems services would be still available. The architecture
recommends how the Salutation Protocol, which essentially consists of exchanging digital
data, should be mapped to the voice channel.

3.1.2. Application Scenarios
Some target application scenarios are shown below to illustrate what services are made possible
by the Salutation Voice Message Systems. Each example also shows what and how the Voice
Message System Functional Unit commands are used to provide services.

3.1.2.1. Example-1: Voice Message Distribution

Telephone
Network

Salutation
VMS

PCMs. X

Telephone

Telephone

Client Server

1) The director in charge of R&D on the west coast is suddenly called by the headquarters on the
east coast. The budget planning meeting to be held tomorrow will be postponed.

2) His secretary, Ms. X, creates a voice message using her PC to tell the meeting of tomorrow
will be postponed, selects the project leaders from the electric phone directory, and requests
the Salutation Voice Message Systems to distribute the message.

3) She always used to call all project leaders, 23 at present, in such occasions. Now, she only
needs to create a message once and picks up a distribution list. If necessary, she can later
collect who is attending the meeting and who is not, using the push buttons on the telephone.

Salutation Architecture Specification V2.0c Part-2

124 06/01//99

The following services of the Functional Unit will be used:

�� Store voice message

�� Send voice message

3.1.2.2. Example-2: Integrated Mail Box for Voice Mail, E-Mail, and FAX

Mr. X PC FAX
Server

Voice Mail
Server
(VMS)

E-Mail
Server

Telephone Network

LAN

Client

1) Mr. X turns on his PC every morning. The Salutation mail box application starts automatically
to check all mails addressed to him and presents the list.

2) This morning, he has received two voice mails, eight e-mails, and one FAX mail, though he
does not really care which is which these days. It seems one of the voice mails is from an
external Non-Salutation telephone as it does not show the sender’s name, subject, etc. in the
list.

3) He retrieves the voice mail message through the speaker on his PC, and finds that it is a
complaint from one of his customers. He forwards it with his comment to the responsible
department, with "Urgent" mark on.

The following services of the Functional Unit will be used:

�� List Folder Content (to get a list of received Voice Messages)

�� Retrieve Voice Message (to retrieve a selected Voice Message)

�� Create Voice Message (to create his comments)

�� Concatenate Voice Message (to combine his comments with the customer’s Voice
Message)

�� Send Voice Message (to forward the Voice Message)

3.1.2.3. Example-3: Equipment Status Inquiry/Report

PBX Salutation
VMS

TelephoneMr. X

Salutation
Copier

Server

Salutation
Fax

1) Mr. X needs to FAX a very thick document.

2) He walks to the Salutation FAX machine, sets the original document, pushes appropriate
buttons including his telephone number and starts the machine.

Salutation Architecture Specification V2.0c Part-2

125 06/01//99

3) Several minutes after he returns to his desk, his telephone rings. It is from the FAX machine
to tell him in voice that a paper jam has occurred.

4) He goes back to the FAX machine, fixes the problem, and restarts the machine.

5) His telephone rings again after a while. This time he is notified of the successful completion of
the job.

The following service of the Functional Unit will be used:

�� Play Voice Message

The same example also applies to the scenario in which a user requests a copy machine to
generate copies of a thick document, and the copy machine notifies failure/success of the user ’s
request by making a telephone call to the user.

3.2. [Voice Message Storage] Functional Unit

3.2.1. Overview
[Voice Message Storage] Functional Unit provides the interfaces for a client to handle voice
messages. It defines voice message handling services like those for storing voice message,
deleting voice message, sending voice message , and/or retrieving voice message, which are
typically found in modern telephone answering machines and voice mail systems. It also abstracts
the storage device as a container of voice messages that may be partitioned into multiple folders.

The following figure illustrates a configuration model to understand how [Voice Message Storage]
Functional Unit works with other resources within equipment and with remote clients who issue
service requests.

Telephone (Client)

LAN attached PC (Client)

Folder management request
Voice message store/send/
 retrieve request
Voice message manipulation
Device control request

Command

Response

Telephone
Network
or PBX

Salutation VMS (Server)

physical
storage

Voice
message
folders

Equipment local applications

[Voice Message Storage] FU

recording, playback, operator panel, ...Local
storage system

Voice
message
formatter

Message
processor/
scheduler

Other Functional Units

[Doc Storage], [Address Book], ..

Attribute
repository

Call
control

Voice message

Play/Record

 [Voice Message Storage] Functional Unit is considered to be composed of the following logical
sub-components or service elements.

• Front-end message processor and job scheduler

Salutation Architecture Specification V2.0c Part-2

126 06/01//99

• Attribute Repository manager

• Voice message formatter

• Virtual storage manager (directory manager)

• Call control

3.2.2. Two phase design of [Voice Message Storage] Functional Unit
The design of [Voice Message Storage] Functional Unit takes phasing approach:

1. The first phase defines only those services and attributes that are necessary for non-
PC/telephone equipment to PC/telephone messaging, and

2. The second phase will define additional services and attributes that are needed for
PC/telephone to PC/telephone messaging.

The services and attributes defined in the first phase form a subset of the fullset services and
capabilities to be defined in the second phase. In the following description, it is referred to the first
phase part as Subset [Voice Message Storage] FU and the fullset as Fullset [Voice Message
Storage] FU. This release of the specification defines the Subset [Voice Message Storage] FU in
detail and provides some idea of the Fullset [Voice Message Storage] FU to allow the readers to
visualize the power of Salutation [Voice Message Storage] FU.

3.2.3. Subset [Voice Message Storage] FU

3.2.3.1. List of Functional Unit Attributes for Subset [Voice Message Storage] FU
The following capability attributes are defined in the Subset [Voice Message Storage] FU:

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private/
Job

Attribute

personalityProtocol 20000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportLevel 20001 N/A INTEGER -value should be
‘one’ for Subset of [Voice
Message Storage] FU
(intGreaterThanOrEqualTo)

Yes No/No

supportedCommand 20002 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 20003 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

maxDuration 20020 INTEGER INTEGER - max value
(intGreaterThanOrEqualTo)

Yes No/No

maxReceiversPlay 20021 Receiver INTEGER - max number of
receivers
(intGreaterThanOrEqualTo)

Yes No/No

maxRecipientsSend 20022 Recipient INTEGER - max number of
recipients
(intGreaterThanOrEqualTo)

Yes No/No

Salutation Architecture Specification V2.0c Part-2

127 06/01//99

voiceSpeed 20023 INTEGER BOOLEAN
(boolEqualTo)

No No/No

voiceVolume 20024 INTEGER BOOLEAN
(boolEqualTo)

No No/No

deliveryGrade 20025 DeliveryGrade SET OF DeliveryGrade
(setIntDoesContain)

Yes No/No

priorityLevel 20030 PriorityLevel SET OF PriorityLevel
(setIntDoesContain)

Yes No/Yes

copyRecipients 20040 Recipient BOOLEAN
(boolEqualTo)

No No/No

blindCopyRecipients 20041 Recipient BOOLEAN
(boolEqualTo)

No No/No

deferredDeliveryTime 20042 UTCTime BOOLEAN
(boolEqualTo)

No No/No

subject 20043 DisplayString BOOLEAN
(boolEqualTo)

No No/No

maxSubjectLength 20044 N/A INTEGER- max length of
subject
(intGreaterThanOrEqualTo)

Yes No/No

synthesize 20050 N/A BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceSpeed 20051 INTEGER BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceVolume 20052 INTEGER BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceType 20053 INTEGER SET OF VoiceType
(setIntDoesContain)

Yes No/No

synthesizeTextLanguage 20054 TextLanguage SET OF TextLanguage
(setIntDoesContain)

Yes No/No

encoding 20060 Encoding SET OF Encoding
(setIntDoesContain)

Yes No/No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

20070 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

NOTE: [Voice Message Storage] FU defines a standard range (0 to 10, with 0 being the lowest
and 10 being the highest) for voiceSpeed, voiceVolume, synthesizeVoiceSpeed and
synthesizeVoiceVolume. A user can specify any value in this range for the parameters
corresponding to these attributes in [Voice Message Storage] FU commands.

Salutation Architecture Specification V2.0c Part-2

128 06/01//99

3.2.3.2. Salutation Personality Message & Protocol for Subset [Voice Message
Storage] FU
This section describes service request protocol for Subset [Voice Message Storage] FU under
Salutation Personality.

3.2.3.2.1. Request Procedure for Subset [Voice Message Storage] FU

3.2.3.2.1.1. Commands of Subset [Voice Message Storage] FU

The following commands and responses are used in the Subset [Voice Message Storage] FU for
making job requests.

�� [Voice Message Storage] FU Mandatory support Command

 For Folder management services

�� ListFolderContentVM

 For Data I/O services

�� SendVM

�� PlayVM

�� [Voice Message Storage] FU Mandatory support common Commands

 The following common commands and responses should be supported.

��RequestDataTransfer

��DataBlockDescription

�� TransferDataBlock

��RequestNextData

�� ACK

��NACK

�� [Voice Message Storage] FU Optional support Command

 For Message Manipulation services

�� SynthesizeVM

 For Vendor specific services

�� VendorEscape

Salutation Architecture Specification V2.0c Part-2

129 06/01//99

3.2.3.2.2. Subset [Voice Message Storage] FU command details

3.2.3.2.2.1. ListFolderContentVM

Client Server

ListFolderContentVM =>

<= TransferDataBlock (VoiceMsgList)

ACK (NULL) =>

This command is used to get a list of the voice messages stored in a specified folder of the Voice
Message Systems device.

A user may use this command to first list out the contents of a folder to get an idea of the voice
messages that it contains, then select a particular voice message from the list, and play it or send
it to another user.

ListFolderContentVM ::= [APPLICATION tagListFolderContentVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

}

FolderID ::= INTEGER
-- FolderID=0 is used for Default Public Folder.

Data transferred by TransferDataBlock command is as follows:

VoiceMsgList ::= SET OF VoiceMessageDescriptor

VoiceMessageDescriptor ::= SEQUENCE
{

voiceMsgId [0] VoiceMsgID,
descriptiveComment [1] DescriptiveComment OPTIONAL

}

DescriptiveComment ::= DisplayString

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder has not been authorized 139

Sample protocol sequences are provided below.

Example Protocol Sequence (1)

Salutation Architecture Specification V2.0c Part-2

130 06/01//99

Client Server

A user uses ListFolderContentVM and then PlayVM with explicit VoiceMsgID.

ListFolderContentVM(...)=>

<= TransferDataBlock (VoiceMsgList)

ACK (NULL) =>

A user selects a voice message from the list.

PlayVM(...)=>

Example Protocol Sequence (2)

Client Server

A user uses ListFolderContentVM and then SendVM with explicit VoiceMsgID.

ListFolderContentVM(...)=>

<= TransferDataBlock (VoiceMsgList)

ACK (NULL) =>

A user selects a voice message from the list.

SendVM(...)=>

Example Protocol Sequence (3)

Client Server

A sender uses ListFolderContentVM and then SendVM with explicit VoiceMsgID. The
receiver uses ListFolderContentVM and then PlayVM to select and listen to the
received voice mail.

A sender uses ListFolderContentVM.

ListFolderContentVM(...)=>

<= TransferDataBlock (VoiceMsgList)

ACK (NULL) =>

A sender selects a voice message from the list.

SendVM(...)=>

A receiver uses ListFolderContentVM to get a list of received voice messages.

ListFolderContentVM(...)=>

<= TransferDataBlock (VoiceMsgList)

ACK (NULL) =>

A receiver selects a voice message from the list.

Salutation Architecture Specification V2.0c Part-2

131 06/01//99

PlayVM(..., OwnTelNo, ...)=>

3.2.3.2.2.2. SendVM

Client Server

SendVM =>

<= ACK(JobHandle)/NACK(ReturnCode)

This command is used to send a specified voice message to one/more receivers. It is like sending
a voice mail to a receiver. The sent voice message gets stored in the appropriate folder of the
receiver in a Voice Message Systems device.

A user may use this command to send an already existing voice message to another user. For
example, a user may use this command to forward a received voice message to all concerned
users. A user may also use this command to send a newly created voice message to one/more
users.

SendVM ::= [APPLICATION tagSendVM] SEQUENCE
{ COMPONENTS OF MsgHeader,

folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
recipients [2] SET OF Recipient,
deliveryGrade [3] DeliveryGrade OPTIONAL,

-- sender specifies the grade of delivery. This information
-- is for the mail server

priorityLevel [4] SimpleJobPriority OPTIONAL,
-- sender specifies the priority level of the message. This
-- information is for the receiver

subject [5] DisplayStringOPTIONAL
-- sender specifies the subject of the message.
-- maximum 256 characters
-- parameters below this are not needed in the subset,
-- but may be needed in the fullset. Of course, which
-- of these are actually needed is an item for further
-- study

-- alternateRecipientAllowed [11] BOOLEAN OPTIONAL,
-- are other users allowed to receive the message in addition
-- to the recipient

-- authorizingUsers [12] SET OF UserID OPTIONAL,
-- users who authorized the sender to send the message
-- (upto maximum 16 users)

-- conversionWithLossProhibited [13] BOOLEAN OPTIONAL,
-- sender instructs that implicit encoded information
-- type conversion(s) should not be performed if there is
-- any possibility of information loss

Salutation Architecture Specification V2.0c Part-2

132 06/01//99

-- crossReferences [14] SET OF VoiceMsgID OPTIONAL,
-- cross refer to the specified voice messages
-- (upto maximum 8 VoiceMsgIDs)

-- expiryDate [15] UTCTime OPTIONAL,
-- sender instructs the expiry date and time of the message

-- implicitConversionProhibited [16] BOOLEAN OPTIONAL,
-- sender instructs that implicit encoded information
-- type conversion(s) should not be performed

-- inReplyTo [17] VoiceMsgID OPTIONAL,
-- sender specifies in-reply-to VoiceMsgID

-- latestDeliveryTime [18] UTCTime OPTIONAL,
-- date and time by which the message must be delivered
-- to the receiver(s)

-- nonReceiptNotificationRequest [19] BOOLEAN OPTIONAL,
-- sender specifies whether he/she wants to be notified or not
-- if the message is not received by the receiver(s)

-- obsoletes [20] SET OF VoiceMsgID OPTIONAL,
-- sender specifies obsolete messages (maximum 8)

-- preventionOfNonDeliveryNotification [21] BOOLEAN OPTIONAL,
-- do not return a non-delivery notification to the sender
-- if the message cannot be delivered

-- receiptNotificationRequest [22] BOOLEAN OPTIONAL,
-- sender wants to be notified when the message has been
-- received by the recipient(s)

-- redirectionDisallowed [23] BOOLEAN OPTIONAL,
-- sender specifies that the redirection of the message
-- should not be done if the recipient has requested this

-- replyRequest [24] BOOLEAN OPTIONAL,
-- sender requests for a reply from the recipient(s)

-- replyBy [25] UTCTime OPTIONAL,
-- sender specifies the deadline for replying

-- replyToUsers [26] SET OF UserID OPTIONAL,
-- sender specifies the user(s) whom to send reply
-- (maximum 32 users)

-- sensitivity [27] Sensitivity OPTIONAL
-- sender specifies the sensitivity level of the message

}

VoiceMsgID ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

133 06/01//99

Recipient ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
recipientId [1] UserID,
recipientType [2] ENUMERATED
{

primary (0),
copy (1),
blindCopy (2)

},
deferredDeliveryTime [3] UTCTime OPTIONAL

-- sender specifies the date and time up to which delivery
-- of the message should be deferred

}

DeliveryGrade ::= ENUMERATED
{

urgent (0),
normal (1),
nonUrgent (2)

}

ACK Response

JobHandle

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder has not been authorized 139

rcInvalidVoiceMsgId Specified Voice Message not found 148

rcInvalidRecipientId Specified recipientId is invalid 168

rcInvalidRecipientType Specified recipientType is invalid 169

rcInvalidDeferredDeliveryTime Specified deferredDeliveryTime is invalid 188

rcInvalidDeliveryGrade Specified delivery grade not valid 189

rcInvalidPriorityLevel Specified priority level not valid 190

rcInvalidSubject Specified subject not valid 191

Sample protocol sequences are provided below.

Example Protocol Sequence (1)

Client Server

A user uses ListFolderContentVM and then SendVM with explicit VoiceMsgID.

Salutation Architecture Specification V2.0c Part-2

134 06/01//99

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A user selects a voice message from the list.

SendVM(...)=>

Example Protocol Sequence (2)

Client Server

A sender uses ListFolderContentVM and then SendVM with explicit VoiceMsgID. The
receiver uses ListFolderContentVM and then PlayVM to select and listen to the
received voice mail.

A sender uses ListFolderContentVM.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A sender selects a voice message from the list.

SendVM(...)=>

A receiver uses ListFolderContentVM to get a list of received voice messages.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A receiver selects a voice message from the list.

PlayVM(..., OwnTelNo, ...)=>

Example Protocol Sequence (3)

Client Server

A user uses SynthesizeVM and then SendVM with the VoiceMsgID of the newly
synthesized voice message

SynthesizeVM(...)=>

<= ACK(VoiceMsgID)

SendVM(...)=>

Salutation Architecture Specification V2.0c Part-2

135 06/01//99

3.2.3.2.2.3. PlayVM

Client Server

PlayVM =>

<= ACK(JobHandle)/NACK(ReturnCode)

This command is used to start playing a voice message on a telephone connection line.

A user may use this command either to listen to an already existing voice message using his/her
own telephone, or to send a voice message to another user using voice channel.

PlayVM ::= [APPLICATION tagPlayVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
receivers [2] SET OF Receiver,
headerInformation [3] HeaderInformation OPTIONAL,
voiceDuration [4] INTEGER OPTIONAL,
voiceSpeed [5] INTEGER OPTIONAL,
voiceVolume [6] INTEGER OPTIONAL

}

Receiver ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
receiverId [1] CHOICE
{

userId [0] UserID,
telephoneNo [1] TelephoneNumberString

},
deferredDeliveryTime [2] UTCTime OPTIONAL

-- sender specifies the date and time up to which delivery
-- of the message should be deferred for this receiver

}

HeaderInformation ::= BIT STRING
{

senderId (0),
dateSent (1)

}

ACK Response

JobHandle --- is needed to perform other operations on the voice message during PlayVM.

Salutation Architecture Specification V2.0c Part-2

136 06/01//99

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder has not been authorized 139

rcInvalidVoiceMsgId Specified Voice Message not found 149

rcInvalidReceiverId Specified receiverId is not valid 170

rcInvalidDeferredDeliveryTime Specified deferredDeliveryTime is not valid 188

rcInvalidHeaderInfo Specified header information not valid 192

rcInvalidVoiceDuration Specified voice duration not valid 200

rcInvalidVoiceSpeed Specified voice speed not valid 201

rcInvalidVoiceVolume Specified voice volume not valid 202

Sample protocol sequences are provided below.

Example Protocol Sequence (1)

Client Server

A user uses ListFolderContentVM and then PlayVM with explicit VoiceMsgID and
OwnTelNo to listen to the voice message.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A user selects a voice message from the list.

PlayVM(..., OwnTelNo, ...)=>

Example Protocol Sequence (2)

Client Server

A user uses ListFolderContentVM and then PlayVM with explicit VoiceMsgID and
AnotherUserTelNo to send the voice message to that user via voice channel.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A user selects a voice message from the list.

PlayVM(..., AnotherUserTelNo, ...)=>

Salutation Architecture Specification V2.0c Part-2

137 06/01//99

Example Protocol Sequence (3)

Client Server

A sender uses ListFolderContentVM and then SendVM with explicit VoiceMsgID. The
receiver uses ListFolderContentVM and then PlayVM to select and listen to the
received voice mail.

A sender uses ListFolderContentVM.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A sender selects a voice message from the list.

SendVM(...)=>

A receiver uses ListFolderContentVM to get a list of received voice messages.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A receiver selects a voice message from the list.

PlayVM(..., OwnTelNo, ...)=>

Example Protocol Sequence (4)

Client Server

A user uses SynthesizeVM and then PlayVM with the VoiceMsgID of the newly
synthesized voice message.

SynthesizeVM(...)=>

<= ACK(VoiceMsgID)

PlayVM(...)=>

3.2.3.2.2.4. SynthesizeVM

Client Server

SynthesizeVM =>

<= ACK(VoiceMsgID)/NACK(ReturnCode)

This command is used to construct a voice message from a text message and store it in the

Salutation Architecture Specification V2.0c Part-2

138 06/01//99

specified folder. When operation is complete, VoiceMsgID assigned to the voice message is
returned.

A user may use this command when he/she does not has any voice recording facility in the
equipment that he/she is using, but wants to create/send a voice message. He/she can do this by
first writing the message in text form, and then using the SynthesizeVM command to get the voice
message equivalent of the text message. This command is also useful for sending voice
messages from an equipment to a person. This is because an equipment may have limited storage
that can store messages only in text form and not voice form. When sending a message to a user,
the equipment may send the text form of the message with a request to deliver it in voice form. In
this case, the system automatically converts the text message into a voice message by using the
SynthesizeVM command.

SynthesizeVM ::= [APPLICATION tagSynthesizeVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
text [1] DisplayString,
textLanguage [2] TextLanguage OPTIONAL,
voiceMessageDataDescriptor [3] VoiceMessageDataDescriptor OPTIONAL,
voiceType [4] VoiceType OPTIONAL,
voiceSpeed [5] INTEGER OPTIONAL,
voiceVolume [6] INTEGER OPTIONAL

}

TextLanguage ::= DisplayString
-- Language tag which is defined in RFC 1766.
-- Language tag consists of primary tag which is ISO 639
-- language and secondary tag which is ISO 3166 country/area
-- in which the language is used.

VoiceMessageDataDescriptor ::= SEQUENCE
{

voiceMessageDataFormat [0] VoiceMessageDataFormat,
voiceMessageFormatInterpretation [1] VoiceMessageFormatInterpretation

}

VoiceMessageDataFormat ::= ENUMERATED
{

voiceMessage (0)
}

VoiceMessageFormatInterpretation ::= CHOICE
{

voiceMessageEncoding [0] Encoding
}

Salutation Architecture Specification V2.0c Part-2

139 06/01//99

Encoding ::= SEQUENCE
{

encodingAlgorithm [0] EncodingAlgorithm,
samplingRate [1] SamplingRate OPTIONAL

}

EncodingAlgorithm ::= ENUMERATED
{

analog (0),
pcm (1),
u-law (2),
a-law (3),
adpcm (4),
cvsd (5),
apc-ab (6),
ld-celp (7),
v-celp (8),
others (127)

}

SamplingRate ::= ENUMERATED
{
-- r4K (0),
-- r8K (1),
-- r16K (2),

r24K (3),
r32K (4)

-- r64K (5),
-- others (127)
}

VoiceType ::= ENUMERATED
{

maleVoicePreferred (125),
femaleVoicePreferred (126),
dontCare (127)

}

ACK Response

VoiceMsgID of the new voice message

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder is not authorized 139

rcInvalidText Text data is not valid 218

Salutation Architecture Specification V2.0c Part-2

140 06/01//99

rcInvalidTextLanguage Text language is not valid 210

rcInvalidEncodingAlgo Specified encoding algorithm not valid 203

rcInvalidSamplingRate Specified sampling rate not valid 204

rcInvalidVoiceType Specified voice type not valid 205

rcInvalidVoiceMessageDescriptor Specified VoiceMessageDescriptor not valid 206

rcInvalidVoiceMessageDataFormat Specified VoiceMessageDataFormat not valid 207

rcInvalidVoiceMessageFormatInter
pretation

Specified VoiceMessageFormatInterpretation not
valid

208

rcInvalidVoiceSpeed Specified voice speed not valid 201

rcInvalidVoiceVolume Specified voice volume not valid 202

Sample protocol sequences are provided below.

Example Protocol Sequence (1)

Client Server

A user uses SynthesizeVM and then PlayVM with the VoiceMsgID of the newly
synthesized voice message.

SynthesizeVM(...)=>

<= ACK(VoiceMsgID)

PlayVM(...)=>

Example Protocol Sequence (2)

Client Server

A user uses SynthesizeVM and then SendVM with the VoiceMsgID of the newly
synthesized voice message.

SynthesizeVM(...)=>

<= ACK(VoiceMsgID)

SendVM(...)=>

Example Protocol Sequence (3)

Client Server

A sender uses SynthesizeVM, then PlayVM and then SendVM with the VoiceMsgID of
the newly synthesized voice message. The receiver then uses ListFolderContentVM
and then PlayVM to select and listen to the received voice mail.

A sender uses SynthesizeVM.

Salutation Architecture Specification V2.0c Part-2

141 06/01//99

SynthesizeVM(...)=>

<= ACK(VoiceMsgID)

A sender uses PlayVM to confirm if the synthesized voice message is OK.

PlayVM(..., OwnTelNo, ...)=>

A sender then sends the voice message to the receiver.

SendVM(...)=>

A receiver next uses ListFolderContentVM to get a list of received voice messages.

ListFolderContentVM(...)=>

<= TransferDataBlock(VoiceMsgList)

ACK (NULL) =>

A receiver selects the voice message from the list.

PlayVM(..., OwnTelNo, ...)=>

3.2.3.2.3. Dynamic Status Operations

Dynamic Status operations allow a client to know the aspect of Functional Unit and the transition in
the aspects. Dynamic Status Parameter describes the aspects. A client may query the current
values of Dynamic Status Parameter, and request [Voice Message Storage] FU to notify an Event
when any transition occurs in the values of Dynamic Status Parameter.

The following commands and response are used for dynamic status operations. The usage of
those commands and responses are described in "Dynamic Status Messages" section on page
49.

� [Voice Message Storage] FU Mandatory support common command

� QueryDynamicStatus

� ACK and NACK

� [Voice Message Storage] FU Optional support common command

� SubscribeEvent, UnsubscribeEvent and NotifyEvent (These commands belong to the
same Optional group, so an FU must support all these commands if it supports them.)

The following Dynamic Status Parameters are defined for [Voice Message Storage] Functional
Unit.

Dynamic Status Parameter Query Event ID Description

PlayVMStatus Yes Yes 20000 Status of play voice message

Data Type of Dynamic Status Parameter

Salutation Architecture Specification V2.0c Part-2

142 06/01//99

PlayVMStatus ::= ENUMERATED
{

playing (0),
suspended (1),
position (2),
error (3),
others (127)

}

3.2.3.2.4. Job Related Operations

A client application can control the way of executing a job and also know the status of the job
execution. The usage of those commands and responses are described in "Job-Related
Messages" section on page 33.

3.2.3.2.4.1. Controlling Job execution

[Voice Message Storage] Functional Unit defines priorityLevel attribute as Job Control Attributes.
The following commands may be used to change the value of the attributes or cancel a job or job
entry.

�� [Voice Message Storage] FU Mandatory support Command

 � CancelJob

 � FreeJobHandle

 � ChangeJobAttribute

 � ACK and NACK

�� [Voice Message Storage] FU Optional support Command

� CancelJobEntry

� ChangeJobEntryAttribute

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

3.2.3.2.4.2. Job Status Notification

[Voice Message Storage] Functional Unit provides flexible ways for a client to know the status or
the result of Voice Message Operation request.

The following commands and responses are used for job status notification.

�� [Voice Message Storage] FU Mandatory support Command

 � QueryJobStatus

 � ACK and NACK

�� [Voice Message Storage] FU Optional support Command

� NotifyJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the

Salutation Architecture Specification V2.0c Part-2

143 06/01//99

same Optional command Group, so an FU must support all these commands if it supports
them.

� QueryJobEntryStatus

� NotifyJobEntryStatus

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

3.2.3.2.4.3. Job Entry Suspend/Resume

[Voice Message Storage] Functional Unit supports the following commands to suspend/resume
jobs submitted by “PlayVM” command (subset) or RecordVM command (fullset).

�� [Voice Message Storage] FU Mandatory support Command

 � SuspendJob

 � ResumeJob

�� [Voice Message Storage] FU Optional support Command

� SuspendJobEntry

� ResumeJobEntry

Note) CancelJobEntry, ChangeJobEntryAttribute, QueryJobEntryStatus,
NotifyJobEntryStatus, SuspendJobEntry, and ResumeJobEntry belong to the same Optional
command Group, so an FU must support all these commands if it supports them.

3.2.3.2.4.4. Job Status Monitor Start/Cancel

[Voice Message Storage] Functional Unit supports the following commands to start/cancel job-
status-monitoring.

� [Voice Message Storage] FU Optional support common command

� StartMonitorJobStatus

� CancelMonitorJobStatus

Note) NotifyJobStatus, StartMonitorJobStatus and CancelMonitorJobStatus belong to the
same Optional command Group, so an FU must support all these commands if it supports
them.

3.2.3.2.4.5. List FU Job Status

�� [Voice Message Storage] FU Mandatory support Command

� ListVMSJob

� ACK and NACK

ListVMSJob Command

ListVMSJob command is used to get the list of job in the [Voice Message Storage] Functional
Unit.

ASN.1 Syntax Definition

Salutation Architecture Specification V2.0c Part-2

144 06/01//99

ListVMSJob ::= [APPLICATION tagListVMSJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcNoJob There is no job 128

Data transferred by TransferDataBlock command is as follows;

VMSJobList ::= SET OF VMSJobDescription

VMSJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
numOfJobEntries [2] INTEGER

}

3.2.3.2.4.6. Job-Specific Reason code

The [Voice Message Storage] Functional Unit specific reason codes will be returned in a
NotifyJobStatus, NotifyJobEntryStatus, and ACK response to QueryJobStatus or
QueryJobEntryStatus Command.

Name Description ReasonCode

equipmentError terminated due to equipment detected errors. 128

waitingForRetry in waiting mode for retry call. 129

3.2.4. Fullset [Voice Message Storage] FU
As mentioned before, the Fullset [Voice Message Storage] FU is an expanded version of the
Subset [Voice Message Storage] FU that defines commands and attributes for PC/telephone to
PC/telephone messaging. Therefore, all the commands and attributes defined in the Subset [Voice
Message Storage] FU are also a part of the Fullset [Voice Message Storage] FU. However, the
commands and attributes already presented in the description of Subset [Voice Message Storage]
FU will not be repeated again and only the additional ones are presented below.

Note: The commands and attributes described below are not yet finalized and are being further
studied and refined. They are given here simply to give an idea of the power of the full specification
of Salutation [Voice Message Storage] FU.

Salutation Architecture Specification V2.0c Part-2

145 06/01//99

3.2.4.1. List of Functional Unit Attributes for Fullset [Voice Message Storage] FU
The following additional capability attributes are tentatively defined in the Fullset [Voice Message
Storage] FU:

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private/
Job

Attribute

folderType FolderType SET OF FolderType
(setIntDoesContain)

Yes No/No

maxDescriptiveComment N/A INTEGER - max value
(IntGreaterThanOrEqualTo)

Yes No/No

accessMode AccessMode SET OF AccessMode
(setIntDoesContain)

Yes No/No

voiceLevel INTEGER BOOLEAN
(boolEqualTo)

No No/No

notifyType NotifyType SET OF NotifyType
(setIntDoesContain)

Yes No/No

sensitivity Sensitivity SET OF Sensitivity
(setIntDoesContain)

Yes No/No

alternateRecipientAllowed INEGER BOOLEAN
(boolEqualTo)

No No/No

authorizingUsers UserID BOOLEAN
(boolEqualTo)

No No/No

maxAuthorizingUsers N/A INTEGER - max value
(IntGreaterThanOrEqualTo)

Yes No/No

conversionWithLossProhibit
ed

INTEGER BOOLEAN
(boolEqualTo)

No No/No

crossReferences VoiceMsgID BOOLEAN
(boolEqualTo)

No No/No

maxCrossReferences N/A INTEGER - max value
(IntGreaterThanOrEqualTo)

Yes No/No

expiryDate UTCTime BOOLEAN
(boolEqualTo)

No No/No

implicitConversionProhibite
d

INTEGER BOOLEAN
(boolEqualTo)

No No/No

inReplyTo VoiceMsgID BOOLEAN
(boolEqualTo)

No No/No

latestDeliveryTime UTCTime BOOLEAN
(boolEqualTo)

No No/No

nonReceiptNotificationRequ
est

INTEGER BOOLEAN
(boolEqualTo)

No No/No

obsoletes VoiceMsgID BOOLEAN
(boolEqualTo)

No No/No

maxObsoletes N/A INTEGER - max value
(IntGreaterThanOrEqualTo)

Yes No/No

Salutation Architecture Specification V2.0c Part-2

146 06/01//99

preventionOfNonDelivery
Notification

INTEGER BOOLEAN
(boolEqualTo)

No No/No

ReceiptNotificationRequest INTEGER BOOLEAN
(boolEqualTo)

No No/No

redirectionDisallowed INTEGER BOOLEAN
(boolEqualTo)

No No/No

replyRequest INTEGER BOOLEAN
(boolEqualTo)

No No/No

replyBy UTCTime BOOLEAN
(boolEqualTo)

No No/No

replyToUsers UserID BOOLEAN
(boolEqualTo)

No No/No

maxReplyToUsers N/A INTEGER - max value
(IntGreaterThanOrEqualTo)

Yes No/No

autoForwarded4 AutoForwarded BOOLEAN
(boolEqualTo)

No No/No

dlExpansionHistory4 DlExpansionHistory BOOLEAN
(boolEqualTo)

No No/No

holdForDelivery4 HoldForCriteria BOOLEAN
(boolEqualTo)

No No/No

implicitConversion4 INTEGER BOOLEAN
(boolEqualTo)

No No/No

redirectionAddress4 Recipient BOOLEAN
(boolEqualTo)

No No/No

restrictedDeliveryId4 Recipient BOOLEAN
(boolEqualTo)

No No/No

storedMessageAlert4 INTEGER BOOLEAN
(boolEqualTo)

No No/No

autoForwardAddress4 Recipient BOOLEAN
(boolEqualTo)

No No/No

submissionTimestamp4 UTCTime BOOLEAN
(boolEqualTo)

No No/No

autoSubmitted4 INTEGER BOOLEAN
(boolEqualTo)

No No/No

3.2.4.2. Salutation Personality Message & Protocol for Fullset [Voice Message
Storage] FU
This section describes service request protocol for Fullset [Voice Message Storage] FU under
Salutation Personality.

4 These parameters are settable for message receivers.

Salutation Architecture Specification V2.0c Part-2

147 06/01//99

3.2.4.2.1. Command Request Procedure for Fullset [Voice Message Storage] FU

3.2.4.2.1.1. Commands of Fullset [Voice Message Storage] FU

The following list describes the tentative additional commands for the Fullset [Voice Message
Storage] FU.

Folder management services

��CreateFolderVM

��DeleteFolderVM

��ChangeFolderDescVM

 Data I/O services

�� StoreVM

��RecordVM

��RetrieveVM

�� SetReceiverOptionsVM

 Message Manipulation services

��DeleteVM

��CopyVM

��ConcatenateVM

�� SeparateVM

 Device Control services

��RepositionVM

��ReviewVM

3.2.4.2.1.2. Common commands

The following common commands and responses are also used.

��RequestDataTransfer

��DataBlockDescription

�� TransferDataBlock

��RequestNextData

�� VendorEscape

�� ACK

��NACK

Salutation Architecture Specification V2.0c Part-2

148 06/01//99

3.2.4.2.2. Fullset [Voice Message Storage] FU command details

3.2.4.2.2.1. CreateFolderVM

Client Server

CreateFolderVM =>

<= ACK(FolderID)/NACK(ReturnCode)

This Command is used to create a new folder in the Voice Message Systems device.

A user may use this command to create multiple folders for grouping of voice messages in his/her
own preferable style. For example, a user may create a new folder every month for grouping of
received voice messages on a monthly basis.

CreateFolderVM ::= [APPLICATION tagCreateFolderVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderType [0] FolderType OPTIONAL,
descriptiveComment [1] DescriptiveComment OPTIONAL,
accessMode [2] AccessMode OPTIONAL

-- creator specifies accesses allowed to other users
}

FolderType ::= ENUMERATED
{

draft (0),
deleted (1),
filed (2),
inbox (3),
outbox (4),
sent (5)

}

AccessMode ::= ENUMERATED
{

readOnly (1),
readWrite (2),
other (127)

}

ACK Response

FolderID of the newly created folder (FolderID ::= INTEGER)

NACK Response

Salutation Architecture Specification V2.0c Part-2

149 06/01//99

Name Description ReturnCode

rcInvalidFolderType Specified folder type is not valid

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidAccessMode Specified access mode is not valid

rcInvalidDescriptiveComment Specified descriptive comment is not valid

rcVmsAccessRejected Access to Voice Message Systems device has not
been authorized

3.2.4.2.2.2. DeleteFolderVM

Client Server

DeleteFolderVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used to delete a folder in the Voice Message Systems device.

For example, a user, who maintains a separate folder for each month’s voice messages, may like
to keep only voice messages received in the past one year and not before that. For this, the user
can use the DeleteVM command (described later) to delete the voice messages in a folder that is
older than a year, and can then use the DeleteFolderVM command to delete the folder itself.

DeleteFolderVM ::= [APPLICATION tagDeleteFolderVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0]FolderID

}

ACK Response

NULL

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcFolderNotEmpty Specified folder is not empty

Salutation Architecture Specification V2.0c Part-2

150 06/01//99

3.2.4.2.2.3. ChangeFolderDescVM

Client Server

ChangeFolderDescVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used for changing the descriptive comment of an already existing folder.

A user may use this command for changing the descriptive comment of a folder when the folder is
used for storing new types of voice messages that were not planned to be stored in it when the
folder was created.

ChangeFolderDescVM ::= [APPLICATION tagChangeFolderDescVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
descriptiveComment [1] DescriptiveComment

}

ACK Response

NULL

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidDescriptiveComment Specified descriptive comment is not valid

3.2.4.2.2.4. StoreVM

Client Server

StoreVM =>

<= ACK(VoiceMsgID)/NACK(ReturnCode)

This command is used to store a voice message into a folder of the Voice Message Systems
device via data channel. The voice message to be stored must be available in a file (already stored
in a file by some mechanism outside the scope of Salutation).

A user may use this command to create a new voice message in a folder, and then use the
SendVM command to send it to another user. Another use of this command is given in the
description of ConcatenateVM command described below.

Salutation Architecture Specification V2.0c Part-2

151 06/01//99

StoreVM ::= [APPLICATION tagStoreVM] SEQUENCE
{

 COMPONENTS OF MsgHeader,
folderId [0] FolderID,
dataHandle [1] DataHandle,
vmsInfo [2] VMSInfo OPTIONAL,
dataTransferMode [3] DataTransferMode OPTIONAL,
voiceMessageDataDescriptor [4] VoiceMessageDataDescriptor OPTIONAL,
descriptiveComment [5] DescriptiveComment OPTIONAL

}

DataHandle ::= INTEGER

VMSInfo ::= SEQUENCE
{

name [0] DisplayStringOPTIONAL,
section [1] DisplayStringOPTIONAL,
company [2] DisplayStringOPTIONAL,
phoneNumber [3] TelephoneNumberString OPTIONAL,
faxNumber [4] TelephoneNumberString OPTIONAL,
address [5] DisplayStringOPTIONAL,
subject [6] DisplayString OPTIONAL

}

DataTransferMode ::= ENUMERATED
{

immediate (0),
delayed (1)

}

ACK Response

VoiceMsgID of the stored voice message.

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidDataHandle Specified dataHandle is not valid

rcInvalidDataTransferMode Specified dataTransferMode is not valid

rcInvalidEncodingAlgo Specified encoding algorithm not valid

rcInvalidSamplingRate Specified sampling rate not valid

rcInvalidVoiceMessageDescriptor Specified VoiceMessageDescriptor not valid

rcInvalidVoiceMessageDataFormat Specified VoiceMessageDataFormat not valid

Salutation Architecture Specification V2.0c Part-2

152 06/01//99

rcInvalidVoiceMessageFormatInter
pretation

Specified VoiceMessageFormatInterpretation not
valid

rcStorageFull Physical storage is full

3.2.4.2.2.5. RecordVM

Client Server

RecordVM =>

<= ACK(VoiceMsgID, JobHandle)/NACK(ReturnCode)

This command is used to start recording a voice message from a telephone in a specified folder.

A user may use this command in similar situations as that for StoreVM, except that the voice
message is recorded by using voice channel instead of data channel.

RecordVM ::= [APPLICATION tagRecordVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
telephoneNo [1] TelephoneNumberString,
vmsInfo [2] VMSInfo OPTIONAL,
maxDuration [3] INTEGER OPTIONAL,
overwriteMode [4] BOOLEAN OPTIONAL,
voiceLevel [5] INTEGER OPTIONAL,
voiceMessageDataDescriptor [6] VoiceMessageDataDescriptor OPTIONAL,
descriptiveComment [7] DescriptiveComment OPTIONAL

}

ACK Response

VoiceMsgID of the recorded voice message, and jobHandle.

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidTelephoneNo Specified telephone number is not valid

rcInvalidMaxDuration Specified maxDuration is not valid

rcInvalidVoiceLevel Specified voiceLevel is not valid

rcInvalidEncodingAlgo Specified encoding algorithm not valid

Salutation Architecture Specification V2.0c Part-2

153 06/01//99

rcInvalidSamplingRate Specified sampling rate not valid

rcInvalidVoiceMessageDescriptor Specified VoiceMessageDescriptor not valid

rcInvalidVoiceMessageDataFormat Specified VoiceMessageDataFormat not valid

rcInvalidVoiceMessageFormatInter
pretation

Specified VoiceMessageFormatInterpretation not
valid

rcStorageFull Physical storage is full

3.2.4.2.2.6. RetrieveVM

Client Server

RetrieveVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used to retrieve a specified voice message stored in a specified folder of the
Voice Message Systems device. The voice message is transported via data channel and played
on the speaker of a PC/WS.

A user may use this command to listen to a received voice message, or to verify the contents of a
voice message that he/she has created using the StoreVM command.

RetrieveVM ::= [APPLICATION tagRetrieveVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
headerInformation [2] BOOLEAN OPTIONAL,
voiceMessageDataDescriptor [3] VoiceMessageDataDescriptor OPTIONAL,
voiceDuration [4] INTEGER OPTIONAL,
voiceSpeed [5] INTEGER OPTIONAL,
voiceVolume [6] INTEGER OPTIONAL

}

ACK Response

NULL

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidVoiceMsgId Specified Voice Message not found

Salutation Architecture Specification V2.0c Part-2

154 06/01//99

rcInvalidHeaderInfo Specified headerInformation is not valid

rcInvalidEncodingAlgo Specified encoding algorithm not valid

rcInvalidSamplingRate Specified sampling rate not valid

rcInvalidVoiceMessageDescriptor Specified VoiceMessageDescriptor not valid

rcInvalidVoiceMessageDataFormat Specified VoiceMessageDataFormat not valid

rcInvalidVoiceMessageFormatInter
pretation

Specified VoiceMessageFormatInterpretation not
valid

rcInvalidVoiceDuration Specified voiceDuration is not valid

rcInvalidSpeed Specified voiceSpeed is not valid

rcInvalidVoiceVolume Specified voiceVolume is not valid

3.2.4.2.2.7. SetReceiverOptionsVM

Client Server

SetReceiverOptionsVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used to allow a receiver to set options that tell the Voice Message Systems how
the messages received for this receiver are to be treated.

A user may use this command, for example, to tell the Voice Message Systems device about a
forwarding address where he/she wants all his/her voice messages to be forwarded.

SetReceiverOptionsVM ::= [APPLICATION tagSetReceiverOptionsVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
holdForDelivery [0] HoldForCriteria OPTIONAL,
implicitConversion [1] BOOLEAN OPTIONAL,
redirectionAddress [2] Recipient OPTIONAL,
restrictedDeliveryId [3] SET OF Recipient OPTIONAL,
storedMsgAlert [4] BOOLEAN OPTIONAL,
autoForwardAddress [5] Recipient OPTIONAL

}

HoldForCriteria ::= SEQUENCE
{

-- for further study
}

ACK Response

NULL

Salutation Architecture Specification V2.0c Part-2

155 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidHoldForDelivery Specified holdForDelivery criteria is not valid

rcInvalidRedirectionAddress Specified redirection address is not valid

rcInvalidRestrictedDeliveryId Specified restrictedDeliveryId is not valid

rcInvalidForwardAddress Specified forward Address is not valid

3.2.4.2.2.8. DeleteVM

Client Server

DeleteVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used to delete a voice message from a folder in the Voice Message Systems
device.

A user may use this command to delete a voice message that is no more needed in a folder. Some
other uses of this command are given during the description of DeleteFolderVM, and SeparateVM
commands.

DeleteVM ::= [APPLICATION tagDeleteVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID

}

ACK Response

NULL

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidVoiceMsgId Specified Voice Message not found

Salutation Architecture Specification V2.0c Part-2

156 06/01//99

3.2.4.2.2.9. CopyVM

Client Server

CopyVM =>

<= ACK(VoiceMsgID)/NACK(ReturnCode)

This command is used to make a copy a specified voice message in the same folder. When
operation is completed, the VoiceMsgID assigned to the copied message is returned.

For example, a user wants to slightly modify an existing voice message before sending it to
another user, but also wants that the original voice message be left unchanged for later use.
He/she can achieve this by first making a copy of the existing voice message by using this
command, then using one/more of the voice message manipulation commands (described later) to
edit the copy, and finally using the SendVM command to send the modified version of the voice
message to the desired receiver(s).

CopyVM ::= [APPLICATION tagCopyVM] SEQUENCE
{

 COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID

}

ACK Response

VoiceMsgID of copies voice message

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidVoiceMsgId Specified Voice Message not found

rcStorageFull Physical storage is full

Salutation Architecture Specification V2.0c Part-2

157 06/01//99

3.2.4.2.2.10. ConcatenateVM

Client Server

ConcatenateVM =>

<= ACK(VoiceMsgID)/NACK(ReturnCode)

This command is used to combine multiple voice messages stored in the Voice Message Systems
device, in the sequence provided, into a single resulting voice message. When the operation
completes, the VoiceMsgID assigned to the resulting voice message is returned.

For example, a user receives a voice message from another user. He/she wants to forward it to
another user by prepending/appending his/her own voice comments to it. To do this, he/she can
create a voice message for his/her own comments by using the StoreVM command, then use the
ConcatenateVM command to prepend/append it to the received voice message, and finally use the
SendVM command to forward it. Another use of this command is given in the description of
SeparateVM command described below.

ConcatenateVM ::= [APPLICATION tagConcatenateVM] SEQUENCE
{

 COMPONENTS OF MsgHeader,
outputFolderId [0] FolderID,
inputVoiceMsg [1] InputVoiceMsg

}

InputVoiceMsg ::= SET OF SEQUENCE
{

folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID

}

ACK Response

VoiceMsgID of the resulting voice message

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidVoiceMsgId Specified Voice Message not found

rcStorageFull Physical storage is full

Salutation Architecture Specification V2.0c Part-2

158 06/01//99

3.2.4.2.2.11. SeparateVM

Client Server

SeparateVM =>

<= ACK(VoiceMsgIDs)/NACK(ReturnCode)

This command is used to divide a specified voice message of the Voice Message Systems device
into two voice messages. The resulting voice messages are stored in the same folder as that of
the original voice message. The original voice message is left unchanged and VoiceMsgIDs of
resulting voice messages is returned.

This command may be used by a user for creating two voice messages out of an already existing
voice message. It may also be used by a user along with DeleteVM and ConcatenateVM
commands to delete a part of an existing voice message. Only SeparateVM and DeleteVM are
needed when one end of an existing voice message is to be deleted. If a portion that does not
belong to one end of an existing voice message is to be deleted, then SeparateVM, DeleteVM, and
ConcatenateVM commands are needed.

SeparateVM ::= [APPLICATION tagSeparateVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
position [2] INTEGER

}

ACK Response

Two VoiceMsgIDs of the resulting voice message

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist

rcFolderAccessRejected Access to folder has not been authorized

rcInvalidVoiceMsgId Specified Voice Message not found

rcInvalidPosition Specified position is not valid

rcStorageFull Physical storage is full

Salutation Architecture Specification V2.0c Part-2

159 06/01//99

3.2.4.2.2.12. RepositionVM

Client Server

RepositionVM =>

<= ACK(CurrentPosition)/NACK(ReturnCode)

This command is used to move the current pointer position forward/backward by a specified period
in a voice message. When operation is complete, current position is returned.

A user wants to listen to only a portion of a voice message somewhere from the middle. The user
can achieve this by using RepositionVM and PlayVM commands.

RepositionVM ::= [APPLICATION tagRepositionVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
voiceMsg [0] VoiceMsg,
period [1] INTEGER

}

VoiceMsg ::= CHOICE
{

voiceMsgId [0] VoiceMsgID,
-- before starting play

jobHandle [1] JobHandle
-- after starting play

}

ACK Response

CurrentPosition (::= INTEGER)

NACK Response

Name Description ReturnCode

rcInvalidVoiceMsgId Specified Voice Message not found

rcInvalidJobHandle Specified jobHandle is not valid

rcInvalidPeriod Specified period is not valid

Salutation Architecture Specification V2.0c Part-2

160 06/01//99

3.2.4.2.2.13. ReviewVM

Client Server

ReviewVM =>

<= ACK(NULL)/NACK(ReturnCode)

This command is used to play a portion of a voice message during a record session.

During a recording session (RecordVM command execution), a user wants to listen to a portion of
the voice message being recorded to verify its contents before continuing to record. He/she can do
this by using the ReviewVM command.

ReviewVM ::= [APPLICATION tagReviewVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
period [1] INTEGER

}

ACK Response

NULL

NACK Response

Name Description ReturnCode

rcInvalidJobHandle Specified jobHandle is not valid

rcInvalidPeriod Specified period is not valid

Salutation Architecture Specification V2.0c Part-2

161 06/01//99

4. Personal Information Systems

4.1. Personal Information Systems Overview
This section describes the Functional Unit that provides services associated with personal
information. The following Functional Unit is defined in version 2 to handle respective personal
information.

� [Address Book]

[Address Book] Functional Unit allows a client application to access and manipulate its address
book information.

A typical equipment that has [Address Book] Functional Unit is as follows:

� PDA (Personal Digital Assistant)

� Telephone or FAX that contains a user-definable telephone directory

� Personal computer with a personal information management (PIM) application

This version of the architecture focuses on the services that may be provided by such personal
equipment. It does not intend to cover full services which are provided by the large "server"
computer that may support corporate or work group level address book data base for many users.

4.1.1. Common Characteristics in Personal Information Systems

4.1.1.1. Concept of Group, Entry and Field
The Personal Information Systems support the concept of the Group, the Entry and the Field. The
Entry is a block of personal information data. The examples of Entry are business card data of
each person, distribution list of FAX mail, etc. The Field is each data in an Entry. The examples of
Field are person’s Name, Address, Title, Telephone number, etc. Each Field has parameters to
describe the Field more specifically. The examples of Telephone number parameter are Home,
Work, Pager, etc. The Group is a container of the Entries. A Group may have multiple Entries in it.

Salutation Architecture Specification V2.0c Part-2

162 06/01//99

Mr. X Data

Name

Home Address

Home Telephone

Home Fax

Work Address

Work Telephone

Work Fax

E-Mail

Ms. Y Data

Name

Organization Name

Title

Work Address

Work Telephone

Alternate Telephone

Work Fax

E-Mail

Branch Office Fax List

Branch A Fax

Branch B Fax

Branch C Fax

Branch D Fax

Branch E Fax

Branch F Fax

Branch G Fax

Branch H Fax

Group

Entry Entry Entry

Field

Field

Field

 :

 :

An FU maintains Groups In It and a client can retrieve personal data In an FU.

Each Group, or Entry is identified by the Group Handle and the Entry Handle which are assigned
by an FU. Each Field is identified by the Field Name which is uniquely defined by the architecture.

4.1.1.2. Exchange data format
Salutation Architecture defines the exchange data format for the Group and the Entry when it is
exchanged between an FU and a client, however, how an FU or a client has personal information
data in it is an implementation option, i.e., an FU or a client can have personal information data in
any format. A client will specify the returned data format when it requests to get Group data or
Entry data from an FU. A client will also specify the data format when it puts personal data into an
FU.

Supported data format by an FU will be informed by the capability attribute. An FU will accept the
supported data format.

In version 2, versit’s vCard is supported as an exchange data format. Refer to versit Electronic
Business Card (vCard) Specification for vCard definition in detail.

4.1.1.3. Data encoding for coded personal data
When exchange data is coded personal data like name, address, etc., it is encoded to be
expressed in 8 bits or in 7 bits. Supported encoding for coded data by an FU will be informed by
the capability attribute. An FU will accept coded data which is encoded by the supported encoding.

Salutation Architecture Specification V2.0c Part-2

163 06/01//99

A client will specify the encoding for returned coded data when it requests to get personal data
from an FU. A client will not specify the encoding for coded data when it puts personal data into an
FU because encoding is specified in the data.

4.1.1.4. Character set encoding for coded personal data
Supported character set for coded personal data by an FU will be informed by the capability
attribute. An FU will accept coded personal data which is encoded by the supported character set.

To identify the character set for exchange data, an FU or a client will set the character set In each
Entry.

4.1.1.5. Data encoding for binary personal data
When exchange data is binary personal data like pronunciation of name (audio data), or logo
(image data), it is encoded to be expressed in 8 bits or in 7 bits. Supported encoding for binary
data by an FU will be informed by the capability attribute. An FU will accept binary data which is
encoded by the supported encoding.

A client will specify the encoding for returned binary data when it requests to get personal data
from an FU. A client will not specify the encoding for binary data when it puts personal data into an
FU because encoding is specified in the data.

4.1.1.6. Operations for Group, Entry and Field

4.1.1.6.1. Group Operation

To get all Group names in an FU, ListGroups command is used. When this command is issued, list
of all Group names and their access mode, Read only or write access, will be returned to a client.
A client will use the OpenGroup command to open the Group. The Group name and the access
mode will be specified to open the Group. When the Group is opened, an FU will assign the Group
Handle to the Group and return it to a client with an ACK. Group Handle is the unique value to
identify the Group in an FU and valid until the Group is closed. Multiple Groups can be opened
independently. To close the Group, CloseGroup command is used.

The operations for the Groups are Create a Group, Delete a Group, Rename Group name and Get
Group Data. CreateGroup command is used to create a new Group. Group name is passed to an
FU and an FU returns the Group Handle with an ACK for further operation. Put data into the Group
will be performed by another command, like AddEntryData because CreateGroup will be used only
to create a personal data container. DeleteGroup command is used to delete a Group. Only the
Group which has no Entry in it can be deleted. If the Group has an Entry in it, the request will be
rejected. RenameGroup command is used to rename the Group name. The new name is passed
to an FU, but the Group Handle assigned to the Group is not changed. GetGroupData command is
used to get whole data in the Group. Returned data format and encoding for coded data and binary
data will be specified by a client. Create a Group, Delete Group and Rename Group name
operations are permitted to a client who can access to the Group in write access mode.

4.1.1.6.2. Entry Operation

Personal Information Systems provide the Field data search operation as an optional function.
When specified Field data is found in an Entry, this Entry is marked as an Active Entry, then next
search operation continues. When the search operation completes, an FU assigns the Entry
Handles to those Active Entries dynamically to identify each Entry in the Group. Entry Handles are

Salutation Architecture Specification V2.0c Part-2

164 06/01//99

valid until next search operation is performed. If an FU does not support the search function, Entry
related operations can not be supported because Entry operations require Entry Handle to identify
the Entry.

Operations for Entries are List Active Entries, Get Entry Data, Get Active Entry Data, Add Entry
Data, Delete Entry Data, Replace Entry Data, Move Entry Data and Copy Entry Data.

ListActiveEntries command is used to get a list of Active Entries. The set of Group Handle, Entry
Handle and character set of each Active Entry will be returned to a client. GetEntryData command
is used to get an active Entry data in a Group. The Group Handle and the Entry Handle which are
returned to the ListActiveEntries command will be used to specify the Entry. The data format and
encoding for coded data and binary data of the returned personal data will be specified by a client.
GetActiveEntryData command is also used to get an active Entry data. The difference from
GetEntryData command is, this command uses the position to specify the Entry in the Active
Entries. The position starts from one to identify the first Entry in the active Entries. The data format
and encoding for coded data and binary data of returned personal data will be also specified by a
client. AddEntryData is used to add Entry data into a Group. ‘To’ Group will be specified by the
Group Handle. DeleteEntryData command is used to delete Entry data in a Group. The Group
Handle and the Entry Handle are used to specify the Entry. ReplaceEntryData command is used to
replace Entry data in a Group. To specify the Entry, Group Handle and the Entry Handle are used.
MoveEntryData command is used to move the Entry data to another Group. To specify the Entry,
the Group Handle and the Entry Handle are used. To specify the ‘to’ Group, ‘to’ Group Handle is
used. An FU will return the new Entry Handle with ACK. CopyEntryData command is used to copy
the Entry data. To specify the Entry, the Group Handle and the Entry Handle are used. ‘To’ Group
is specified by the Group Handle. An FU will return the new Entry Handle with ACK.

Add Entry Data, Delete Entry Data, Replace Entry Data, Move Entry Data and Copy Entry Data
operations are permitted for a client who can access to the Group in write access mode.

4.1.1.6.3. Field Operation

The Field in each Entry is identified by the Field Name, which is uniquely defined by the
architecture. An Entry may have multiple same Field data in it.

Operations for Fields are Search Field Data and Get Active Entries Field Data. Refer to next
paragraph for Field search operation. GetActiveEntriesFieldData command is used to get specific
Field data in Active Entries. Field Name is used to specify the Field in an Entry. A set of Group
Handle, Entry Handle and Field data value in Active Entries will be returned. If an Entry has a
hierarchy structured data, or multiple Fields data, all Field data specified by Field Name will be
returned. An FU will sort the Field data before it returns a set of Fields data to a client. The sort is
an optional function.

4.1.1.6.4. Field Data Search Operation

An FU supports the Field data search operation as an optional function. SearchFieldData
command is used to search specific Field data in an Entry. The search operation will be performed
only for string data in an Entry which data is encoded by the specified character set. To specify the
Field, ‘Field Name’ or ‘ALL’ is used. When Field Name is specified, the data of the specified Field
will be searched. When ‘ALL’ is specified, all Fields data in an Entry will be searched. Example of
‘ALL’ search operation is when ‘ALL=New York’ is specified, an FU will search the value of ‘New
York’ in all Fields, i.e. Name fields, Address fields, Telephone number fields, Title fields, etc. When
Field has parameter(s), Field Name and parameter(s) will be used to search specific Field data.

Salutation Architecture Specification V2.0c Part-2

165 06/01//99

When Field parameter(s) is (are) specified, an FU will search all combinations of Field and
parameter(s) which match to the specified Field Name and parameter(s). Example of the Field
Name with parameter search is Telephone number with HOME parameter. In this case, an FU will
search all Fields data which Field is TEL with HOME parameter, they are TEL (HOME, FAX), TEL
(HOME, VOICE), TEL (HOME, MGS, VOICE), TEL (CELL, HOME, WORK), etc. Therefore, if a
client does not specify the parameter for the Field, an FU will search all specified Fields which have
any parameters. Field Name and its parameters are always encoded by 8859-1 (US ASCII)
character set.

The search operation is simple Field data comparison with the specified value, if it is ‘Equal to’,
‘Greater than’ or ‘Less than’ the specified value. The ‘Equal to’ comparison will take place from the
top of the Field by shifting one by one character data if it is equal to the specified value. ’Greater
than’ or ‘Less than’ is valid for numeric data like Telephone numbers. From the top of the Field,
whole data is compared with the specified value. When Telephone number is compared, non-
numeric numbers are treated as null and not used for the comparison. Example of this case is,
‘(919)254-1111’, ‘919-254-1111’, ‘919 254 1111’ are treated as ‘9192541111’.

The logical operation, ‘AND’ or ‘OR’ will be supported for the comparison. An example of ‘OR’
logical operation is to find the name of ‘Goldsmith’, ‘GOLDSMITH’ or ‘goldsmith’. An example of
‘AND’ operation is to find the name of ‘Goldsmith’ whose address is ‘New York’.

Also two levels of ‘Wildcard’ character data search operation are supported. The asterisk (*) is
used for variable length string data pattern matching and the question (?) is for one string data
pattern matching. An example of ‘*’ is to find the family name of Goldsmith, Silversmith, Blacksmith
or Coppersmith by specifying ‘*smith’. An example of ‘?’ is to find the telephone number whose
area code is specific, for example by specifying ‘919254????’.

When Field data meets the search condition, the Entry is marked as an Active Entry. When an
Entry has hierarchy structured for personal data, all Field data specified by Field Name will be
compared with the specified value.

Two types of Search operation are supported. The first type search is to search specific Field data
in ALL Entries in the specified Groups. When Field is found in an Entry which meets the search
condition, this Entry is marked as an Active Entry, then search operation is continued until all
remained Entries are searched. This operation is specified by setting the Search Handle value to
zero. The second type search is to search specific Field data in the CURRENT Active Entries. This
operation is specified by setting the Search Handle to the value which is returned to the previous
search operation. This allows a client to narrow down the target Entry which has the specific data a
client wants to get. In both cases, an FU returns the number of found Active Entries and the
Search Handle.

4.1.1.7. List of Messages in Personal Information Systems
The following commands and responses are used in the Personal Information Systems Functional
Unit.

�� Personal Information Systems Mandatory support Commands;

�� ListGroups

��OpenGroup

��CloseGroup

��GetGroupData

Salutation Architecture Specification V2.0c Part-2

166 06/01//99

�� Personal Information Systems Mandatory support Common Commands and Responses;

��RequestDataTransfer

��DataBlockDescription

�� TransferDataBlock

��RequestNextData

�� ACK and NACK

�� Personal Information Systems Optional support Commands; (These commands belong to the
same optional support group, so all these commands should be supported if an FU support
them.)

��CreateGroup

��DeleteGroup

��RenameGroup

�� ListActiveEntries

��GetEntryData

��GetActiveEntryData

�� AddEntryData

��DeleteEntryData

��ReplaceEntryData

��MoveEntryData

��CopyEntryData

�� SearchFieldData

��GetActiveEntriesFieldData

�� Personal Information Systems Optional support Command

�� VendorEscape

4.2. [Address Book] Functional Unit

4.2.1. Overview
An [Address Book] Functional Unit maintains address book information in it.

Commands used for the [Address Book] Functional Unit and their usage examples are as follows;

� ListGroups, which returns a list of all Group Names and their access modes.

� OpenGroup, which opens specific Group and returns Group Handle.

� CloseGroup, which closes the Group.

� CreateGroup, which creates a new Group as a data container and returns its Group Handle.

� DeleteGroup, which deletes the Group.

Salutation Architecture Specification V2.0c Part-2

167 06/01//99

� RenameGroup, which changes the Group name.

� GetGroupData, which returns whole Group data.

� ListActiveEntries, which returns a set of Group Handle (GH), Entry Handle (EH) and
character set of Active Entries.

Groups

ListActiveEntries

Active Entries

GH, EH, Char set

GH, EH, Char set

GH, EH, Char set

GH, EH, Char set

� GetEntryData, which returns whole Active Entry data which is specified by the Group handle
and the Entry handle.

Salutation Architecture Specification V2.0c Part-2

168 06/01//99

� GetActiveEntryData, which returns whole Active Entry data which is specified by the position
in Active Entries.

GetActiveEntryData

Position=3

Groups

Position 1

Position 2

Position 3

Position 4

Active Entries

Position 3

Entry Data

� AddEntryData, which adds an Entry data into a Group.

� DeleteEntryData, which deletes an Entry data in a Group.

� ReplaceEntryData, which replaces existing Entry data with new Entry data.

� MoveEntryData, which moves Entry data to another Group.

� CopyEntryData, which copies Entry data to a Group as another Entry data and returns an
Entry Handle.

Salutation Architecture Specification V2.0c Part-2

169 06/01//99

� SearchFieldData, which searches the Field data that meets the specified search condition,
and returns the number of found Active Entries.

Groups

All Entries

Search Handle=0

to search for all Entries.

Search Handle=previous Handle to

search for current Active Entries.

Position 1

Position 2

Position 3

Position 4

Active Entries

Active Entries

Position 2

Position 1

Salutation Architecture Specification V2.0c Part-2

170 06/01//99

� GetActiveEntriesFieldData, which returns a set of Group Handle (GH), Entry Handle (EH)
and specified Field data. The Field data can be sorted before they are returned to a client.

Groups

All Entries
Search Handle=0

 to search for all Entries.

Search condition

 Name=Smith AND

 Address=San Francisco

GetActiveEntriesData

Name Field without Sort

Position 1

Position 2

Position 3

Position 4

Active Entries

GH, EH, Smith, Mike (Position 1)

GH, EH, Smith, Barry (Position 2)

GH, EH, Smith, Ken (Position 3)

GH, EH, Smith, Kevin (Position 4)

 :

GetActiveEntriesData

Name Field with Sort

GH, EH, Smith, Anne M (Position 13)

GH, EH, Smith, Barry (Position 2)

GH, EH, Smith, Bertha L (Position 8)

GH, EH, Smith, Billy (Position 24)

 :

When target person is found in this list, a client will use Group handle and Entry handle to get

Salutation Architecture Specification V2.0c Part-2

171 06/01//99

whole Entry data.

This version of the architecture focuses on the personal use, so there are restrictions as follows:

� There is no direct interaction between two Functional Units. Namely, a client application must
interact with two Functional Units to exchange data between them. For instance, a client
application is responsible for synchronizing two address books in two PDAs.

Address
 Book

 Client
Application

Address
 Book

synchronize
business card exchange

Address
 Book

 Client
Application

FAX Data
 Send

name

facsimile
 number

facsimile
 number

Address
 Book

 Client
Application

Voce Message
 Send

name

telephne
 number

telephone
 number

�� There is no Personal Information Systems unique security control. How to define Read only or
Write access for the Group is out of the scope.

4.2.2. Examples of operational sequence

4.2.2.1. To get whole Group data
A typical sequence of commands to get whole Group data is as follows:

1) Use ListGroups command to know all Group names.

2) Use OpenGroup command to open the target Group and to get Group handle.

3) Use GetGroupData command to get whole Group data in the specified format.

4) Use CloseGroup command to close the Group.

4.2.2.2. To get searched Entry data by specifying the Entry
A typical sequence of commands to search and get Entry data in a Group by specifying the
handles is as follows:

1) Use ListGroups command to get all Group names.

2) Use OpenGroup command to open the target Group(s) and to get Group handle(s).

Salutation Architecture Specification V2.0c Part-2

172 06/01//99

3) Use SearchFieldData command to search specific Field data and to get the number of active
Entries. Continue this operation until the number of active Entries becomes small.

4) Use ListActiveEntries command to get a set of Group handle and Entry handle.

5) Use GetEntryData command to get Entry data by specifying the handles returned to
ListActiveEntries command. Continue this operation until the target Entry data is found.

6) Use CloseGroup command to close the Group.

4.2.2.3. To get searched Entry data by specifying the position
A typical sequence of commands to search and get Entry data in a Group by specifying the
position is as follows:

1) Use ListGroups command to get all Group names.

2) Use OpenGroup command to open the target Group(s) and to get Group handle(s).

3) Use SearchFieldData command to search specific Field data and to get the number of active
Entries. Continue this operation until the number of active Entries becomes small.

4) Use GetActiveEntryData command to get Entry data by specifying the position in active
Entries. Continue this operation until the target Entry data is found.

5) Use CloseGroup command to close the Group.

4.2.2.4. To get Entry data by getting Active Entries Field Data
A typical sequence of commands to get an Entry data by getting Active Entries Field Data is as
follows:

1) Use ListGroups command to get all Group names.

2) Use OpenGroup command to open the target Group(s) and to get Group handle(s).

3) Use SearchFieldData command to search specific Field data and to get the number of active
Entries. Continue this operation until the number of active Entries becomes small.

4) Use GetActiveEntriesFieldData command to get all active Entries Field data. The specified
Field may be different from the Field which is used for search operation. If an FU supports the
sort function and the sort is specified, returned Field data will be sorted. Continue this
operation until target Entry data is found and its Group handle and Entry handle is gotten.

5) Use GetEntryData command to get Entry data by specifying the Group handle and Entry
handle.

6) Use CloseGroup command to close the Group.

4.2.3. Field Names of [Address Book] FU
[Address Book] FU adopts the Field Name from versit’s vCard Property name. Following is the
examples of supported Field Names. Refer to versit Electronic Business card (vCard) Specification
for details.

In addition to these Field Names, [Address Book] FU supports ‘ALL’ as a Field Name for search
operation.

Salutation Architecture Specification V2.0c Part-2

173 06/01//99

Field Field Name Parameters

Formatted Name FN -

Name N -

Photograph PHOTO GIF, CGM, WMF, BMP, MET, PMB, DIB, PICT, TIFF, PS, PDF,
JPEG, MPEG, MPEG2, AVI, QTIME

Birth date BDAY -

Address ADR DOM, INTL, POSTAL, PARCEL, HOME, WORK

Address delivery label LABEL DOM, INTL, POSTAL, PARCEL, HOME, WORK

Telephone number TEL PREF, WORK, HOME, VOICE, FAX, MSG, CELL, PAGER, BBS,
MODEM, CAR, ISDN, VIDEO

Electronic mail EMAIL AOL, AppleLink, ATTMail, CIS, eWorld, INTERNET, IBMMail,
MCIMail, POWERSHARE, PRODIGY, TLX, X400

Mailer MAILER -

Time zone TZ -

Location GEO -

Title TITLE -

Business category ROLE -

Logo LOGO GIF, CGM, WMF, BMP, MET, PMB, DIB, PICT, TIFF, PS, PDF,
JPEG, MPEG, MPEG2, AVI, QTIME

Organization ORG -

Comment NOTE -

Pronunciation SOUND WAVE, PCM, AIFF

Uniform Resource Locator URL -

Unique Identifier UID -

Public Key KEY -

4.2.4. List of Functional Unit Attribute
The following table shows the attributes defined for [Address Book] Functional Unit.

Salutation Architecture Specification V2.0c Part-2

174 06/01//99

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private
Attribute

personalityProtocol 30000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No

supportedCommand 30001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No

exchangeDataFormatSuppo
rt

30002 ExchangeDataFormat Set OF ExchangeDataFormat
(setIntDoesContain)

No No

characterSetSupport 30003 CharSetID SET OF CharSetID
(setIntDoesContain)

No No

searchSupport 30004 N/A SearchSupport
(boolEqualTo)

No No

sortSupport 30005 N/A SortSupport
(boolEqualTo)

No No

4.2.5. Salutation Personality Message & Protocol

4.2.5.1. ListGroups command

Client Server

ListGroups =>
<= TransferDataBlock (GroupList)

ACK (NULL) =>

This command is used to get a list of Group names in an FU. The set of Group name and its
access mode will be returned. When the command can not be handled by an FU, NACK will be
returned.

ListGroups ::= [APPLICATION tagListGroups] SEQUENCE
{

COMPONENTS OF MsgHeader
}

Data transferred by TransferDataBlock command is as follows:

GroupList ::= SET OF GroupDescription

GroupDescription ::= SEQUENCE
{

groupName [0] DisplayString,
writable [1] BOOLEAN DEFAULT FALSE

-- TRUE shows Group is writable
}

Salutation Architecture Specification V2.0c Part-2

175 06/01//99

4.2.5.2. OpenGroup command

Client Server

OpenGroup =>
<= ACK (GroupHandle/ReturnCode)/NACK (ReturnCode)

This command is used to open a Group and should be issued prior to the use of a Group. Group
name is used to specify the Group. Access mode is also set in the command. When the Group is
ready for a client use, an FU will return a Group handle with ACK. The Group can be opened by
multiple clients simultaneously for read operation. If the Group is already opened for the read/write
operation, next OpenGroup request for read/write operation will be rejected. If the next OpenGroup
request is for read only operation, the request will be accepted and the second parameter of ACK
will show that the Group is being opened for read/write operation by another client. When the
command can not be handled, NACK will be returned.

OpenGroup ::= [APPLICATION tagOpenGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupName [0] DisplayString,
readWriteAccess [1] BOOLEAN DEFAULT FALSE

-- TRUE shows Writable access
}

ACK Response

Parameter Name Data Type Note

parameter-1 GroupHandle

parameter-2 ReturnCode (rcBeingModified, ENUMERATED
(148))

The Group is
being opened
for read/write
operation by
another client.

NACK Response

Salutation Architecture Specification V2.0c Part-2

176 06/01//99

Name Description ReturnCode

rcNoGroup There is not specified Group. 138

rcInvalidAccessMode Access mode is not valid. 139

rcCanNotBeOpened The Group can not be opened. 140

rcBeingModified The Group is already opened for read/write
operation

148

4.2.5.3. CloseGroup command

Client Server

CloseGroup =>
<= ACK (NULL)/NACK (ReturnCode)

This command is used to close a Group. Group Handle is used to specify the Group. When the
command can not be handled, NACK will be returned.

CloseGroup ::= [APPLICATION tagCloseGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid 141

4.2.5.4. CreateGroup command

Client Server

CreateGroup =>
<= ACK (GroupHandle)/ NACK (ReturnCode)

Salutation Architecture Specification V2.0c Part-2

177 06/01//99

This command is used to create a new Group as an Entry container. Group name is passed to an
FU and an FU returns a Group Handle with ACK. When the command can not be handled, NACK
will be returned.

CreateGroup ::= [APPLICATION tagCreateGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupName [0]DisplayString

}

ACK Response

Parameter Name Data Type Note

parameter-1 GroupHandle

NACK Response

Name Description ReturnCode

rcGroupAlreadyExist Specified Group name already exists in an FU. 144

4.2.5.5. DeleteGroup command

Client Server

DeleteGroup =>
<= ACK (NULL)/NACK (ReturnCode)

This command is used to delete a Group. Group Handle is used to specify the Group. If the Group
has an Entry in it, NACK will be returned. This operation is permitted to a client who can access to
the Group in write access mode. When the command can not be handled, NACK will be returned.

DeleteGroup ::= [APPLICATION tagDeleteGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER

}

ACK Response

No parameter

NACK Response

Salutation Architecture Specification V2.0c Part-2

178 06/01//99

Name Description ReturnCode

rcGroupHasEntry Specified Group has an Entry. 145

rcInvalidGroupHandle Specified Group Handle is invalid. 141

4.2.5.6. RenameGroup command

Client Server

RenameGroup =>
<= ACK (NULL)/NACK (ReturnCode)

This command is used to rename a Group name. Group Handle is used to specify the Group. This
operation is permitted to a client who can access to the Group in write access mode. The value of
the Group Handle is unchanged by the rename operation. When the command can not be
handled, NACK will be returned.

RenameGroup ::= [APPLICATION tagRenameGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
newName [1] DisplayString

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcGroupAlreadyExist Specified Group name already exists in an FU. 144

rcOperationNotPermitted Operation to the Group is not permitted. 146

Salutation Architecture Specification V2.0c Part-2

179 06/01//99

4.2.5.7. GetGroupData command

Client Server

GetGroupData =>
<= TransferDataBlock (GroupData)

ACK (NULL) =>

This command is used to get whole data in the Group. Group Handle is used to specify the Group.
The returned data format and encoding for coded data and binary data will be specified by a client.
When the command can not be handled, NACK will be returned.

GetGroupData ::= [APPLICATION tagGetGroupData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
exchangeDataFormat [1] ExchangeDataFormat

}

ExchangeDataFormat ::= CHOICE
{

vCard [0] VCardEncoding
}

VCardEncoding ::= SEQUENCE
{

codedEncoding [0] CodedEncoding,
binaryEncoding [1] BinaryEncoding

}

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

BinaryEncoding ::= ENUMERATED
{

base64Encoding (0),
eightBit (1)

}

Data transferred by TransferDataBlock command is as follows:

GroupData ::= SET OF EntryData

Salutation Architecture Specification V2.0c Part-2

180 06/01//99

EntryData ::= SEQUENCE
{

charSetID [0] CharSetID,
data [1] OCTET STRING

-- vCard format
}

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidExchangeDataFormat Specified exchange data format is invalid. 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

4.2.5.8. ListActiveEntries command

Client Server

ListActiveEntries =>
TransferDataBlock (ActiveEntriesList)

ACK (NULL) =>

This command is used to get an Active Entries list which is created by the SearchFieldData
operation. The set of the Group Handle , the Entry Handle and character set of each active Entry
will be returned. When the command can not be handled, NACK will be returned.

ListActiveEntries ::= [APPLICATION tagListActiveEntries] SEQUENCE
{

COMPONENTS OF MsgHeader
}

Data transferred by TransferDataBlock command is as follows:

ActiveEntriesList ::= SET OF ActiveEntries

Salutation Architecture Specification V2.0c Part-2

181 06/01//99

ActiveEntries ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID

}

NACK Response

Name Description ReturnCode

rcNoActiveEntries There is no active Entries. 178

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.9. GetEntryData command

Client Server

GetEntryData =>
<= TransferDataBlock (EntryData)

ACK (NULL) =>

This command is used to get an Active Entry data by specifying the Group by the Group handle
and the Entry by the Entry handle. The Group handle and the Entry handle will be gotten by issuing
ListActiveEntries command or GetActiveEntriesFieldData command. The returned data format and
encoding for coded data and binary data will be specified by a client. When the command can not
be handled, NACK will be returned.

GetEntryData ::= [APPLICATION tagGetEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
exchangeDataFormat [2] ExchangeDataFormat

}

ExchangeDataFormat ::= CHOICE
{

vCard [0] VCardEncoding
}

VCardEncoding ::= SEQUENCE
{

codedEncoding [0] CodedEncoding,
binaryEncoding [1] BinaryEncoding

}

Salutation Architecture Specification V2.0c Part-2

182 06/01//99

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

BinaryEncoding ::= ENUMERATED
{

base64Encoding (0),
eightBit (1)

}

Data transferred by TransferDataBlock command is as follows:

EntryData ::= SEQUENCE
{

charSetID [0] CharSetID,
data [1] OCTET STRING

--vCard format
}

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid 141

rcInvalidEntryHandle Specified Entry Handle is invalid 179

rcInvalidExchangeDataFormat Specified exchange data format is invalid 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.10. GetActiveEntryData command

Client Server

GetActiveEntryData =>
<= TransferDataBlock (ActiveEntryData)

ACK (NULL) =>

This command is used to get an active Entry data by specifying the position in the active Entries.
The position starts from one to show the first Entry in the active Entries. The returned data format

Salutation Architecture Specification V2.0c Part-2

183 06/01//99

and encoding for coded data and binary data will be specified by a client. When the command can
not be handled, NACK will be returned.

GetActiveEntryData ::= [APPLICATION tagGetActiveEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
position [0] INTEGER,
exchangeDataFormat [1] ExchangeDataFormat

}

ExchangeDataFormat ::= CHOICE
{

vCard [0] VCardEncoding
}

VCardEncoding ::= SEQUENCE
{

codedEncoding [0] CodedEncoding,
binaryEncoding [1] BinaryEncoding

}

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

BinaryEncoding ::= ENUMERATED
{

base64Encoding (0),
eightBit (1)

}

Data transferred by TransferDataBlock command is as follows:

ActiveEntryData ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
data [3] OCTET STRING

-- vCard format
}

NACK Response

Salutation Architecture Specification V2.0c Part-2

184 06/01//99

Name Description ReturnCode

rcInvalidPosition Specified position is invalid. 180

rcNoActiveEntries There is no active Entries. 178

rcInvalidExchangeDataFormat Specified exchange data format is invalid. 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.11. AddEntryData command

Client Server

AddEntryData =>
<= ACK (EntryHandle)/NACK (ReturnCode)

This command is used to add an Entry data to the Group. The Group is specified by the Group
Handle. An FU returns the Entry Handle assigned to the added Entry. This operation is permitted
to a client who can access to the Group in write access mode. When the command can not be
handled, NACK will be returned.

AddEntryData ::= [APPLICATION tagAddEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
charSetID [1] CharSetID,
dataFormat [2] DataFormat,
data [3] OCTET STRING

-- vCard format
}

DataFormat ::= ENUMERATED
{

vCard (0)
}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

Salutation Architecture Specification V2.0c Part-2

185 06/01//99

NACK Response

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcNoRoomToAddReplace The Group has no room to add an Entry data. 147

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidDataFormat Specified data format is invalid or not supported. 167

rcInvalidReceivedDataFormat Received data format is invalid. 181

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.12. DeleteEntryData command

Client Server

DeleteEntryData =>
<= ACK (NULL)/NACK (ReturnCode)

This command is used to delete an Entry in the Group. The Entry is specified by the Group Handle
and the Entry Handle. This operation is permitted to a client who can access to the Group in write
access mode. When the command can not be handled, NACK will be returned.

DeleteEntryData ::= [APPLICATION tagDeleteEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER

}

ACK Response

No parameter

NACK Response

Salutation Architecture Specification V2.0c Part-2

186 06/01//99

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.13. ReplaceEntryData command

Client Server

ReplaceEntryData =>
<= ACK (NULL)/NACK (ReturnCode)

This command is used to replace the Entry data in the Group. The Entry to be replaced is specified
by the Group Handle and the Entry Handle. This operation is permitted to a client who can access
to the Group in write access mode. When the command can not be handled, NACK will be
returned.

ReplaceEntryData ::= [APPLICATION tagReplaceEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
dataFormat [3] DataFormat,
data [4] OCTET STRING

-- vCard format
}

DataFormat ::= ENUMERATED
{

vCard (0)
}

ACK Response

No parameter

NACK Response

Salutation Architecture Specification V2.0c Part-2

187 06/01//99

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcNoRoomToAddReplace The Group has no room to replace an Entry data. 147

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidDataFormat Specified data format is invalid or not supported. 167

rcInvalidReceivedDataFormat Received data format is invalid. 181

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry Operation is not supported. 218

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

4.2.5.14. MoveEntryData command

Client Server

MoveEntryData =>
<= ACK (EntryHandle)/NACK (ReturnCode)

This command is used to move an Entry from current Group to another Group. The Entry is
specified by the Group Handle and the Entry Handle. To Group is specified by the Group Handle.
An FU will return Entry Handle, which is assigned to the Entry with ACK. This operation is
permitted to a client who can access to the ‘from’ and ‘to’ Groups in write access mode. When the
command can not be handled, NACK will be returned.

MoveEntryData ::= [APPLICATION tagMoveEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fromGroupHandle [0] INTEGER,
fromEntryHandle [1] INTEGER,
toGroupHandle [2] INTEGER

}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

NACK Response

Salutation Architecture Specification V2.0c Part-2

188 06/01//99

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidFromGroupHandle Specified ‘from’ Group Handle is invalid. 142

rcInvalidToGroupHandle Specified ‘to’ Group Handle is invalid. 143

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.15. CopyEntryData command

Client Server

CopyEntryData =>
<= ACK (EntryHandle)/NACK (ReturnCode)

This command is used to copy Entry data into the Group. The Entry is specified by the Group
Handle and the Entry Handle. To Group is specified by the Group Handle. An FU returns the Entry
Handle with ACK which is assigned to the copied Entry. This operation is permitted to a client who
can access to the Group in write access mode. When the command can not be handled, NACK will
be returned.

CopyEntryData ::= [APPLICATION tagCopyEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fromGroupHandle [0] INTEGER,
fromEntryHandle [1] INTEGER,
toGroupHandle [2] INTEGER

}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

NACK Response

Salutation Architecture Specification V2.0c Part-2

189 06/01//99

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidFromGroupHandle Specified ‘from’ Group Handle is invalid. 142

rcInvalidToGroupHandle Specified ‘to’ Group Handle is invalid. 143

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcInvalidGroupHandle Specified to Group Handle is invalid. 141

rcCommandNotSupported Command for Entry Operation is not supported. 218

4.2.5.16. SearchFieldData command

Client Server

SearchFieldData =>
<= ACK (SearchHandle, NumberOfActiveEntries)

/NACK (ReturnCode)

This command is used to search the specific Field data in ALL Entries or CURRENT Active Entries
which data are encoded by the specified character set in the specified Groups. If Search Handle
value is zero, it shows that search operation will be performed to ALL Entries in the specified
Groups. If specified search Handle is the returned value of the previous search operation, the
search operation will be performed to the CURRENT Active Entries. (Note that even if ALL Entries
or CURRENT active Entries are searched to find specific data, the Entries which data is encoded
by the specified character set are the target Entries.) Field Name and its parameters are used to
specify the Field. If Field name is ‘ALL’, all Fields will be searched. When an FU finds the Field
data which meets the search condition, the Entry is marked as an Active Entry, then next search
operation will be continued. When all Entries or all Active Entries are searched, an FU returns
Search Handle and the numbers of Active Entries. When the command can not be handled, NACK
is returned.

SearchFieldData ::= [APPLICATION tagSearchFieldData] SEQUENCE
{

COMPONENTS OF MsgHeader,
searchHandle [0] INTEGER,
charSetID [1] CharSetID,

-- to specify the Entry which data is encoded by this character set
codedEncoding [2] CodedEncoding,

-- Value to be compare is encoded by specified encoding.
searchCondition [3] SearchCondition,
groupHandleList [4] GroupHandleList OPTIONAL

-- Optional for search operation to current Active Entries
}

Salutation Architecture Specification V2.0c Part-2

190 06/01//99

NumberOfActiveEntries ::= INTEGER

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

SearchCondition ::= CHOICE
{

simpleFieldCompare [0] SimpleFieldCompare,
compoundCompare [1] CompoundCompare

}

SimpleFieldCompare ::= SEQUENCE
{

howToCompare [0] HowToCompare,
fieldName [1] DisplayString,

-- Field Name (Parameter, Parameter,..)
-- Encoded by 8859-1 (US ASCII) character set

value [2] DisplayString
-- Only String data can be searched.
-- Encoded by the specified encoding and character set

}

HowToCompare ::= ENUMERATED
{

equal (0),
notEqual (1),
greaterThan (2),
greaterThanOrEqualTo (3),
lessThan (4),
lessThanOrEqualTo (5)

}

CompoundCompare ::= SEQUENCE
{

operand1 [0] SearchCondition,
connection [1] Connection,
operand2 [2] SearchCondition

}

Connection ::= ENUMERATED
{

andConnect (0),
orConnect (1)

}

Salutation Architecture Specification V2.0c Part-2

191 06/01//99

GroupHandleList ::= SET OF GroupHandle

GroupHandle ::= INTEGER

ACK Response

Parameter Name Data Type Note

parameter-1 SearchHandle

parameter-2 NumberOfActiveEntries

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidSearchHandle Specified Search Handle is invalid. 182

rcInvalidCharacterSet Specified Character set is not same as current
active Entries.

173

rcDataNotFound Data not found. 183

rcCodedEncodingNotSupported Specified Coded encoding is not supported 170

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry/Field Operation is not
supported.

218

4.2.5.17. GetActiveEntriesFieldData command

Client Server

GetActiveEntriesFieldData =>
<= TransferDataBlock(ActiveEntriesFieldDataList)

ACK (NULL) =>

This command is used to get specified Field data of the current Active Entries. The Field is
specified by the Field name and its parameter(s) and only string data Field can be specified. If an
Entry has multiple Field data specified by the Field and/or parameter(s), all data will be returned
separately with the Group handle and the Entry handle. The returned data encoding will be
specified by a client. If an Entry does not have specified Field data, null data will be returned with
the Group handle and the Entry handle. The Field data can be sorted before they are returned to a
client. When the command can not be handled, NACK will be returned.

Salutation Architecture Specification V2.0c Part-2

192 06/01//99

GetActiveEntriesFieldData ::= [APPLICATION tagGetActiveEntriesFieldData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fieldName [0] DisplayString,

-- Field Name (Parameter, Parameter,..)
-- Encoded by 8859-1 (US ASCII) character set

codedEncoding [1] CodedEncoding,
sort [2] Sort OPTIONAL

}

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

Sort ::= ENUMERATED
{

ascendingBitOrder (0),
descendingBitOrder (1),
weightingFactor (2),
others (127)

}

Data transferred by TransferDataBlock command is as follows:

ActiveEntriesFieldDataList ::= SET OF ActiveEntriesFieldData

ActiveEntriesFieldData ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
value [3] DisplayString

}

NACK Response

Salutation Architecture Specification V2.0c Part-2

193 06/01//99

Name Description ReturnCode

rcInvalidFieldName Specified Field name is invalid. 208

rcFieldDataNotFound Specified Field data not found. 209

rcCodedEncodingNotSupported Specified Coded encoding is not supported 170

rcSortNoSupport Sort operation is not supported. 210

rcNoActiveEntries There is no active Entries. 178

rcCommandNotSupported Command for Entry/Field Operation is not
supported.

218

4.3. [Schedule] Functional Unit

4.3.1. Overview
[Schedule] Functional Unit was dropped from this version of the specification. It will be supported
in the later version.

Salutation Architecture Specification V2.0c Part-2

194 06/01//99

Appendices

Salutation Architecture Specification V2.0c Part-2

195 06/01//99

5. ASN.1 Tag
Salutation Packets are defined with Abstract Syntax Notation One (ASN.1) as defined by ISO
8824. In other words, a format of records carried in Salutation Packets is specified with a tag,
which is specified with a class and a number within the class. There are four classes available in
ASN.1, among which Application and Context-Specific tags are used to define tags in this
specification.

A Context-Specific class is used to represent a tag for a field or record (data type) that is used in
only a single or local context, such as in a parameter of a specific message.

Numbers for Context-Specific classes are defined when they are used.

An Application class is used to represent a tag for the messages defined for Functional Units under
Salutation Personality Protocol. Numbers for Application classes are defined in the following
sections

5.1. Common
-- ACK/NACK Response
tagACK INTEGER ::= 0
tagNACK INTEGER ::= 1

-- Data Transfer Messages
tagRequestDataTransfer INTEGER ::= 100
tagDataBlockDescription INTEGER ::= 101
tagTransferDataBlock INTEGER ::= 102
tagRequestNextData INTEGER ::= 103

-- Attribute Repository Messages
tagGetPrivateAttribute INTEGER ::= 200
tagGetGlobalAttribute INTEGER ::= 201
tagSetPrivateAttribute INTEGER ::= 202

Salutation Architecture Specification V2.0c Part-2

196 06/01//99

-- Job Related Messages
tagQueryJobStatus INTEGER ::= 300
tagQueryJobEntryStatus INTEGER ::= 301
tagNotifyJobStatus INTEGER ::= 302
tagNotifyJobEntryStatus INTEGER ::= 303
tagChangeJobAttribute INTEGER ::= 304
tagChangeJobEntryAttribute INTEGER ::= 305
tagSuspendJob INTEGER ::= 306
tagSuspendJobEntry INTEGER ::= 307
tagResumeJob INTEGER ::= 308
tagResumeJobEntry INTEGER ::= 309
tagCancelJob INTEGER ::= 310
tagCancelJobEntry INTEGER ::= 311
tagFreeJobHandle INTEGER ::= 312
tagStartMonitorJobStatus INTEGER ::= 313
tagCancelMonitorJobStatus INTEGER ::= 314

-- Dynamic Status Messages
tagQueryDynamicStatus INTEGER ::= 400
tagSubscribeEvent INTEGER ::= 401
tagNotifyEvent INTEGER ::= 402
tagUnsubscribeEvent INTEGER ::= 403

-- Vendor Escape Messages
tagVendorEscape INTEGER ::= 999

5.2. Document Systems
-- [Print] Functional Unit
tagPrint INTEGER ::= 10000
tagListPrintJob INTEGER ::= 10001

-- [DOC Storage] Functional Unit
tagRetrieveDoc INTEGER ::= 11000
tagStoreDoc INTEGER ::= 11001
tagListFolderDoc INTEGER ::= 11002
tagListFolder INTEGER ::= 11003
tagDeleteDoc INTEGER ::= 11004
tagChangeDocDesc INTEGER ::= 11005
tagCopyDoc INTEGER ::= 11006
tagMoveDoc INTEGER ::= 11007
tagCreateFolder INTEGER ::= 11008
tagChangeFolderDesc INTEGER ::= 11009
tagDeleteFolder INTEGER ::= 11010

Salutation Architecture Specification V2.0c Part-2

197 06/01//99

-- [FAX Data Send] Functional Unit
tagSendFAX INTEGER ::= 12000
tagListFaxJob INTEGER ::= 12001

5.3. Voice Message Systems
--[Voice Message Storage] Functional Unit
tagListFolderContentVM INTEGER ::= 20000
tagSendVM INTEGER ::= 20001
tagPlayVM INTEGER ::= 20002
tagSynthesizeVM INTEGER ::= 20003
tagListVMSJob INTEGER ::= 20004

5.4. Personal Information Systems
-- [Address Book] Functional Unit
tagListGroups INTEGER ::= 30000
tagOpenGroup INTEGER ::= 30001
tagCloseGroup INTEGER ::= 30002
tagCreateGroup INTEGER ::= 30003
tagDeleteGroup INTEGER ::= 30004
tagRenameGroup INTEGER ::= 30005
tagGetGroupData INTEGER ::= 30006
tagListActiveEntries INTEGER ::= 30007
tagGetEntryData INTEGER ::= 30008
tagGetActiveEntryData INTEGER ::= 30009
tagAddEntryData INTEGER ::= 30010
tagDeleteEntryData INTEGER ::= 30011
tagReplaceEntryData INTEGER ::= 30012
tagMoveEntryData INTEGER ::= 30013
tagCopyEntryData INTEGER ::= 30014
tagSearchFieldData INTEGER ::= 30015
tagGetActiveEntriesFieldData INTEGER ::= 30016

Salutation Architecture Specification V2.0c Part-2

198 06/01//99

6. Data Type Definition
Throughout the document, the data type for all the textual information is defined as "DisplayString".

DisplayString ::= OCTET STRING -- Textual information

6.1. Service Description Record
In the following ASN.1 definitions of records, some elements of SEQUENCE types are flagged as
OPTIONAL. However, depending on the context where the types are used, the elements are
obligatory. The comment to the elements indicates in which contexts the elements must exist:

ServiceDescriptionRecord ::= SEQUENCE
{

functionalUnits [0] SET OF FunctionalUnitDescriptionRecord
}

FunctionalUnitDescriptionRecord ::= SEQUENCE
{

functionalUnitId [0] FunctionalUnitID,
functionalUnitHandle [1] FunctionalUnitHandle,

-- Ignored in registered and requested FUDR
attributes [2] SET OF AttributeRecord

}

FunctionalUnitID ::= INTEGER

FunctionalUnitHandle ::= INTEGER

AttributeRecord ::= SEQUENCE
{

attributeId [0] AttributeID,
CHOICE

{
compareFunctionId [1] CompareFunctionID,

-- Used in registered or requested FUDR
compareResult [2] CompareResultCode

-- Used in reply FUDR
},
value [3] ANY

}

AttributeID ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

199 06/01//99

CompareFunctionID ::= ENUMERATED
{

-- Left -hand operand = attribute of Registered Functional Unit Description Record
-- Right -hand operand = attribute of Requested Functional Unit Description Record

unspecified (0), -- used in Query Capability
--- for INTEGER (including ENUMERATED) types ---
intLessThan (1),
intLessThanOrEqualTo (2),
intGreaterThan (3),
intGreaterThanOrEqualTo (4),
intEqualTo (5),
intNotEqualTo (6),
--- for BOOLEAN types ---
boolEqualTo (11),
boolNotEqualTo (12),
--- for OCTET STRING (including DisplayString) types---
strLessThan (21),
strLessThanOrEqualTo (22),
strGreaterThan (23),
strGreaterThanOrEqualTo (24),
strEqualTo (25),
strNotEqualTo (26),
strDoesContain (27), -- contain as a substring
strIsContained (28), -- contained as a substring
--- for SET OF INTEGER types ---
setIntDoesContain (61),
setIntIsContained (62),
setIntEqualTo (63),
setIntNotEqualTo (64),
setIntIntersect (65), -- at least one member is common
--- for SET OF OCTET STRING types ---
setStrDoesContain (71),
setStrIsContained (72),
setStrEqualTo (73),
setStrNotEqualTo (74),
setStrIntersect (75) -- at least one member is common

}

Salutation Architecture Specification V2.0c Part-2

200 06/01//99

CompareResultCode ::= ENUMERATED
{

--- Comparison was performed ---
true (0),
--- Comparison was not performed ---
attributeNotRegistered (2),
compareFunctionNotDefined (3),
wrongDataType (4),
attributeNotRequested (5)

}

6.2. Salutation Personality Protocol
Data types are listed in alphabetical order in each subsection.

6.2.1. Common
AbsoluteFunctionalUnitHandle ::= SEQUENCE
{

functionalUnit [0] FunctionalUnitHandle,
nodeAddress [1] CHOICE
{

slmId [1] SLMID
} OPTIONAL -- if omitted, the FU is registered with the same

-- SLM as the FU receiving this parameter
}

AttributeList ::= SET OF SEQUENCE
{

attributeId [0] AttributeID,
attributeValue [1] ANY -- Type is defined by each attribute.

}

AuthenticationFlavor ::= ENUMERATED
{

null (0),
userIdAndPassword (1)

}

CharSetID ::= INTEGER -- Coded character set ID as registered with IANA
-- (MIB enumeration value is used)

DataHandle ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

201 06/01//99

DataLocation ::= CHOICE
{

client [0] NULL, -- default
exportPool [1] NULL, -- for destination
functionalUnit [2] AbsoluteFunctionalUnitHandle, -- for source
url [3] DisplayString

-- file system designated by URL of either ftp or file scheme
}

DataLocationScheme ::= ENUMERATED
{

salutation (0), -- client/exportPool/functionalUnit allowed
urlOfFtpScheme (1), -- URL with FTP scheme allowed
urlOfFileScheme (2) -- URL with FILE scheme allowed

}

DataTransferMode ::= ENUMERATED
{

immediate (0),
delayed (1)

}

DynamicStatusID ::= INTEGER

FreeStorageSize ::= INTEGER

JobEntriesStatus ::= SET OF SEQUENCE
{

jobEntryId [0] JobEntryID,
jobEntryStatusCode [1] JobStatusCode,
jobEntryReasonCode [2] ReasonCode OPTIONAL

-- present only if jobEntryStatusCode=suspended or error
}

JobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
requesterUserId [1] UserID,

-- "UserID" is set from the "UserID" specified in the Open Service
-- request that has established a service session. Therefore, a client
-- application must have registered as a [Client] FU to actually
-- specify its "User ID" value so that it appears in the JobList.

jobStatusCode [2] JobStatusCode,
dataSize [3] INTEGER OPTIONAL,
numOfJobEntries [4] INTEGER OPTIONAL

}

JobEntryID ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

202 06/01//99

JobHandle ::= INTEGER

JobList ::= SET OF JobDescription

JobPriority ::= INTEGER (0..100) -- 50 is the normal priority.
-- 100 is the highest priority.

JobStatusCode ::= ENUMERATED
{

completed (0), -- job (entry) execution is successfully completed
queued (1), -- job (entry) execution has not begun yet

-- "queued" is used in NotifyJob(Entry)Status only when “WaitingForScheduledTime” job (Entry) is
-- queued

started (2), -- job (entry) execution has started and is being executed
suspended (3), -- job (entry) execution is suspended temporarily
resumed (4), -- suspended job (entry) execution is resumed

-- "resumed" is never used in ACK response to QueryJob(Entry)Status
error (5), -- job (entry) execution is failed and was aborted
waitingForScheduledTime (6), -- job (entry) execution is scheduled at a later specific time

-- "waitingForScheduledTime" is never used in NotifyJob(Entry)Status
canceled (7), -- job (entry) was canceled by client’s request
aborted (8) -- job (entry) execution was aborted by client’s request

}

JobStatusNotificationMode ::= SEQUENCE
{

notificationTypeList [0] SET OF JobStatusCode,
-- The list of job or job entry status types to be notified

requestJobEntriesStatus [1] BOOLEAN DEFAULT FALSE
-- If the job-request-type command has no job entry or if “notificationTypeList” is empty,
-- this parameter shall be omitted.
-- Otherwise,
-- When it is set to TRUE in the job-request-type command, “notificationTypeList” applies to
-- all the job entries. Notification of command-level is not performed, but only notification of
-- each job entry status is performed.
-- When it is set to FALSE or omitted, notification of each job entry is not performed, but only
-- command-level notification is performed.

}

Life ::= ENUMERATED
{

job (0),
session (1),
persistent (2)

}

Salutation Architecture Specification V2.0c Part-2

203 06/01//99

NotificationScheme ::= CHOICE
{

message [0] SEQUENCE
{

fu [0] FunctionalUnitHandle,
nodeAddress [1] CHOICE
{

slmId [1] SLMID
}

}
}

ReasonCode ::= ENUMERATED
{
-- Values in the range of 0..127 are reserved for reason codes that are common to any jobs.

-- Values in the range of 128..32767 are reserved for job-specific reason codes.
-- They are defined by each Functional Unit specification.

-- Values larger than 32767 are reserved for vendor-specific reason codes.
}

Salutation Architecture Specification V2.0c Part-2

204 06/01//99

ReturnCode ::= ENUMERATED
{
-- Values in the range of 0..127 are reserved for reason codes that are common to any messages.

rcSyntaxError (1),
-- The message has no APPLICATION tag.
-- The message length is incorrect.
-- The message data type is not SEQUENCE.
-- The msgSeqId has a tag.
-- The msgSeqId length is incorrect.
-- The msgSeqId data type is not INTEGER.
-- A mandatory parameter is missing.
-- A parameter has no context-specific tag.
-- A parameter length is incorrect.
-- A parameter data type is incorrect.

rcInvalidMessageHeader (2),
-- The msgSeqId sign is incorrect.
-- The msgSeqId value is incorrect. (The message sender is attempting to initiate a new message
-- sequence while another message sequence initiated by the sender is still active.)

rcSystemError (3),
-- Message execution failed due to a system error such as memory allocation error.

rcTemporaryBusy (4),
-- The message cannot be executed at the moment due to a resource shortage.

rcUnsupportedMessage (5),
-- The message is unknown or not supported.

rcUnauthorizedMessage (6),
-- The message is not supported for the current class of user.

rcInvalidMessageSequence (7),
-- The message is not allowed in the current context of message sequence.
rcUnsupportedParameter (8)
-- A parameter tag number is unknown or not supported.

-- Values in the range of 128..32767 are reserved for message-specific return codes.
-- They are defined by each Functional Unit specification.

-- Values larger than 32767 are reserved for vendor-specific return codes.
}

SimpleJobPriority ::= ENUMERATED
{

low (0),
normal (50),
high (100)

}

SLMID ::= OCTET STRING (SIZE(16))

Salutation Architecture Specification V2.0c Part-2

205 06/01//99

SpoolStorage ::= BOOLEAN

SubscriptionHandle ::= INTEGER

SupportedCommand ::= ENUMERATED
{
-- Common command Optional Group

vendorEscape (0),
--Support of vendorEscape (VendorEscape)

notifyEventRelated (1),
-- Support of notifyEventRelated Optional Group (SubscribeEvent, UnsubscribeEvent/NotifyEvent)

notifyJobStatusRelated (2),
-- Support of notifyJobStatusRelated Group (NotifyJobStatus/StartMonitorJobStatus/
-- EndMonitorJobStatus/NotifyJobEntryStatus5)

jobEntryRelated (3),
-- Support of jobEntryRelated Optional Group (CancelJobEntry, ChangeJobEntryAttribute/
-- QueryJobEntryStatus/NotifyJobEntryStatus/SuspendJobEntry/ResumeJobEntry 5)

-- Document Systems Optional Group
-- [Print] FU

-- Reserved (20),
-- [DOC Storage] FU

folderHandlingRelated (30),
-- Support of folderHandlingRelated Optional Group (DeleteDoc/CopyDoc/MoveDoc/
-- ChangeDocDesc/CreateFolder/DeleteFolder/ChangeFolderDesc)

-- [FAX Data Send] FU
-- Reserved (40),

-- [FAX Data] FU
faxDocIDHandlingRelated (50),

-- Support of faxDocIdHandlingRelated Optional Group (RetrieveFaxDocID)
-- Personal Information Systems Optional Group
-- [Address Book] FU

entryOperationRelated (70),
-- Support of entryOperationRelated Optional Group (CreateGroup/DeleteGroup/RenameGroup/
-- ListActiveEntries/GetEntryData/GetActiveEntryData/AddEntryData/DeleteEntryData/
-- ReplaceEntryData/MoveEntryData/CopyEntryData/SearchFieldData/GetActiveEntriesFieldData)

-- Voice Message Systems Optional Group
-- [Voice Message Storage] FU

synthesizeOpeRelated (90)
-- Support of synthesizeOpeRelated Optional Group (SynthesizeVM)

}

TelephoneNumberString ::= DisplayString
-- FROM("0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" |
-- " " | "(" | ")" | "-" | "+" | "," | "*" | "#" |
-- "A" | "B" | "C" | "D")

5 NotifyJobEntryStatus command is supported when both of "notifyJobStatusRelated" and "jobEntryRelated" are set.

Salutation Architecture Specification V2.0c Part-2

206 06/01//99

UserID ::= DisplayString

6.2.2. Document Systems
ByteFillOrder ::= ENUMERATED
{
-- Following value is meaningful when document data format is biLevelImageStream or tiff.
-- ByteFillOrder shows the bit order in the image data byte.
-- When image data is raw data (not compressed), it shows the Byte Fill Order of raw image
-- data. When image data is compressed, it shows the Byte Fill Order of compressed data.

-- addr0 addr1 addr2 addr3
-- [0..7] [8..15] [16..23] [24..31] .. ByteFillOrder=msb case
-- [7..0] [15..8] [23..16] [31..24] .. ByteFillOrder=lsb case

msb (0),
lsb (1)

}

Salutation Architecture Specification V2.0c Part-2

207 06/01//99

DataFormat ::= ENUMERATED
{

notSpecified (127),

--Document Related Data Format Start
--
-- Image Bitstream listed bellow. When selected, ImageStreamAttributes are referred to

biLevelImageStream (1000), --Three ImageSize types are supported
-- When this data format is set, the image size
-- attribute can be selected from "axisSize",
-- "totalSize" or "pageDimensions".

biLevelImageStreamAxisSize (1001), -- axisSize in ImageSize is supported.
-- When this data format is set, the image size
-- attribute must be "axisSize".

biLevelImageStreamTotalSize (1002), -- totalSize in ImageSize is supported.
-- When this data format is set, the image size
-- attribute must be "totalSize".

biLevelImageStreamPageDimension (1003), -- pageDimension in imageSize is supported.
-- When this data format is set, the image size
-- attribute must be "pageDimensions".

-- Structured Image Data listed bellow
ms53A12 (1010),
tiff (1011),
bmp (1012),
pcx (1013),
dcx (1014),
winMetaFile (1015),
os2MetaFile (1016),
xdw (1017), -- DocuWorks image format. Fuji Xerox Co. Ltd.
jfif (1018), -- Color image format

-- Printer Datastream listed bellow.
-- Each PDL needs the version information. PDL version will be further studied.

langPCL (1203), -- Printer Control Language. Hewlett-Packard Co.
lang201PL (1204), -- NEC Co.
langPJL (1205), -- Printer Job Language. Hewlett-Packard Co.
langPS (1206), -- PostScript(TM). Post Script is a trademark of

-- Adobe Systems Inc.
langEscapeP (1209), -- EPSON ESC/P(TM). Epson Co.
langLIPS (1239), -- LBP Image Processing System. Canon Inc.
langIPDS (1250), -- Intelligent Printer Data Stream,

-- IBM Printing Systems. Corresponds to
-- langIPDS(7) of RFC1759.

langPAGES (1251), -- Page Printer Advanced Graphics Escape Set.
-- IBM Japan Ltd.

langMODCA (1252), -- Mixed Object Document Content Architecture,
-- IBM Printing Systems. Corresponds to
-- langIPDS(15) of RFC1759.

langRPDL (1260), -- Ricoh Corp.

Salutation Architecture Specification V2.0c Part-2

208 06/01//99

langART (1270), -- Fuji Xerox Co. Ltd.

-- Unstructured Text Data listed bellow. (for further study)
plainText (1400),

--
-- Structured Text Data (for further study)
--
-- Portable Document

pdf (1600) -- Portable Document Format,
-- Adobe Systems Inc.

-- Other Types (for further study)
--
-- Document Related Data Format End
}

DocFormatInterpretation ::= CHOICE
{

imageStreamAttributes [0] ImageStreamAttributes
-- Chosen when documentDataFormat is
-- biLevelImageStream

--
-- Other interpretation attributes are for further study
}

DocumentDataDescriptor ::= SEQUENCE
{

documentDataFormat [0] DataFormat,
documentFormatInterpretation [1] DocFormatInterpretation OPTIONAL

}

ImageCompAlgorithm ::= ENUMERATED
-- Following value is meaningful when document data format is biLevelImageStream or tiff.

{
raw (0),
mh (1),
mhb (2), -- EOL Byte Boundary
mr (3),
mrb (4), -- EOL Byte Boundary
mmr (5),
jpeg (6), -- Compression for color image
jbig (7), -- Progressive Bi-level Image Compression

-- ITU-T Recommendation T.82
other (127)

}

Salutation Architecture Specification V2.0c Part-2

209 06/01//99

ImageResolution ::= ENUMERATED
-- Following value is meaningful when document data format is biLevelImageStream , tiff, bmp, pcx
-- or dcx.

{
normal (0), -- 8x3.85l/mm
fine (1), -- 8x7.7l/mm
semi-superFine (2), -- 8x15.4l/mm
superFine (3), -- 16x15.4l/mm
dpi180 (4), -- 180dpi
dpi200 (5), -- 200dpi
dpi240 (6), -- 240dpi
dpi300 (7), -- 300dpi
dpi360 (8), -- 360dpi
dpi400 (9), -- 400dpi
dpi600 (10), -- 600dpi
dpi720 (11), -- 720dpi
dpi800 (12), -- 800dpi
dpi1200 (13), -- 1200dpi
dpi200x100 (30), -- 200x100dpi G4 Optional
dpi100 (31) -- 100dpi

}

ImageSize::= CHOICE
{

axisSize [0] SEQUENCE
{

xAxisSize [0] INTEGER, -- Unit : dot
yAxisSize [1] INTEGER -- Unit : dot

},
totalSize [1] INTEGER, -- Unit : byte
pageDimensions [2] PageDimensions

}

ImageStreamAttributes ::= SEQUENCE
{

-- All parameters shall be specified for “biLevelImageStream”
-- document format.

imageSize [0] ImageSize,
imageCompAlgorithm [1] ImageCompAlgorithm,
imageByteFillOrder [2] ByteFillOrder,
imageResolution [3] ImageResolution

}

Salutation Architecture Specification V2.0c Part-2

210 06/01//99

MaximumRecordingLength ::= ENUMERATED
{

a4 (0),
b4 (1),
unlimited (2)

}

PageDimensions ::= SEQUENCE
{

recordingWidth [0] RecordingWidth,
maximumRecordingLength [1] MaximumRecordingLength

}

RecordingWidth ::= ENUMERATED
{

rw864 (0),
rw1216 (1),
rw1728 (2),
rw2048 (3),
rw2432 (4)

}

6.2.2.1. [Print] Functional Unit
ExcerptPrintJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
printPriority [2] SimpleJobPriority

}

Salutation Architecture Specification V2.0c Part-2

211 06/01//99

ListExcerptPrintJob ::= SET OF ExcerptPrintJobDescription

PaperDirection ::= ENUMERATED
{

portrait (1),
landscape (2),
other (127)

}

PaperSize ::= ENUMERATED
{

-- reference from printer MIB’s recommendation.
letter (1), -- North American letter size: 8.5 by 11 inches
legal (2), -- North American legal size: 8.5 by 14 inches
na-10x13-envelope (3), -- North American 10x13 envelope size: 10 by 13 inches
na-9x12-envelope (4), -- North American 9x12 envelope size: 9 by 12 inches
na-number-10-envelope (5), -- North American number 10 business envelope

-- size: 4.125 by 9.5 inches
na-7x9-envelope (6), -- North American 7x9 size: 7 by 9 inches
na-9x11-envelope (7), -- North American 9x11 size: 9 by 11 inches
na-10x14-envelope (8), -- North American 10x14 envelope size: 10 by 14 inches
na-number-9-envelope (9), -- North American number 9 business envelope
na-6x9-envelope (10), -- North American 6x9 envelope size: 6 by 9 inches
na-10x15-envelope (11), -- North American 10x15 envelope size: 10 by 15 inches
a (12), -- engineering A size 8.5 inches by 11 inches
b (13), -- engineering B size 11 inches by 17 inches
c (14), -- engineering C size 17 inches by 22 inches
d (15), -- engineering D size 22 inches by 34 inches
e (16), -- engineering E size 34 inches by 44 inches
iso-a0 (17), -- ISO A0 size: 841 mm by 1189 mm
iso-a1 (18), -- ISO A1 size: 594 mm by 841 mm
iso-a2 (19), -- ISO A2 size: 420 mm by 594 mm
iso-a3 (20), -- ISO A3 size: 297 mm by 420 mm
iso-a4 (21), -- ISO A4 size: 210 mm by 297 mm
iso-a5 (22), -- ISO A5 size: 148 mm by 210 mm
iso-a6 (23), -- ISO A6 size: 105 mm by 148 mm
iso-a7 (24), -- ISO A7 size: 74 mm by 105 mm
iso-a8 (25), -- ISO A8 size: 52 mm by 74 mm
iso-a9 (26), -- ISO A9 size: 37 mm by 52 mm
iso-a10 (27), -- ISO A10 size: 26 mm by 37 mm
iso-b0 (28), -- ISO B0 size: 1000 mm by 1414 mm
iso-b1 (29), -- ISO B1 size: 707 mm by 1000 mm
iso-b2 (30), -- ISO B2 size: 500 mm by 707 mm
iso-b3 (31), -- ISO B3 size: 353 mm by 500 mm
iso-b4 (32), -- ISO B4 size: 250 mm by 353 mm
iso-b5 (33), -- ISO B5 size: 176 mm by 250 mm
iso-b6 (34), -- ISO B6 size: 125 mm by 176 mm
iso-b7 (35), -- ISO B7 size: 88 mm by 125 mm
iso-b8 (36), -- ISO B8 size: 62 mm by 88 mm

Salutation Architecture Specification V2.0c Part-2

212 06/01//99

iso-b9 (37), -- ISO B9 size: 44 mm by 62 mm
iso-b10 (38), -- ISO B10 size: 31 mm by 44 mm
iso-c0 (39), -- ISO C0 size: 917 mm by 1297 mm
iso-c1 (40), -- ISO C1 size: 648 mm by 917 mm
iso-c2 (41), -- ISO C2 size: 458 mm by 648 mm
iso-c3 (42), -- ISO C3 size: 324 mm by 458 mm
iso-c4 (43), -- ISO C4 size: 229 mm by 324 mm
iso-c5 (44), -- ISO C5 size: 162 mm by 229 mm
iso-c6 (45), -- ISO C6 size: 114 mm by 162 mm
iso-c7 (46), -- ISO C7 size: 81 mm by 114 mm
iso-c8 (47), -- ISO C8 size: 57 mm by 81 mm
iso-designated (48), -- ISO Designated Long

-- size: 110 mm by 220 mm
jis-b0 (49), -- JIS B0 size 1030 mm by 1456 mm
jis-b1 (50), -- JIS B1 size 728 mm by 1030 mm
jis-b2 (51), -- JIS B2 size 515 mm by 728 mm
jis-b3 (52), -- JIS B3 size 364 mm by 515 mm
jis-b4 (53), -- JIS B4 size 257 mm by 364 mm
jis-b5 (54), -- JIS B5 size 182 mm by 257 mm
jis-b6 (55), -- JIS B6 size 128 mm by 182 mm
jis-b7 (56), -- JIS B7 size 91 mm by 128 mm
jis-b8 (57), -- JIS B8 size 64 mm by 91 mm
jis-b9 (58), -- JIS B9 size 45 mm by 64 mm
jis-b10 (59), -- JIS B10 size 32 mm by 45 mm
na-8X13-legal (70), -- governmental legal 8 inches by 13 inches
hagaki (71), -- Hagaki size 100 mm by 148 mm
half-letter (72), -- North American half letter size: 5.5 by 8.5 inches
others (127)

}

PersonalityProtocol ::= ENUMERATED
{

salutationPrint (1),
other (127),

-- For Emulated Personality or Native Personality

langPCL (1203),
langPJL (1205),
langPS (1206),
win32RawPrtData (1211), -- Raw Print Data Stream for 32-bit Windows OS
langLIPS (1239)

}

Salutation Architecture Specification V2.0c Part-2

213 06/01//99

PrintControlAttribute ::= SEQUENCE
{

printPaperSize [0] PaperSize OPTIONAL,
printResolution [1] ImageResolution OPTIONAL,
printPaperDirection [2] PaperDirection OPTIONAL,
printCopyCount [3] INTEGER OPTIONAL,
printPaperInputSelect [4] PrintPaperInputSelect OPTIONAL,
printPaperOutputSelect [5] PrintPaperOutputSelect OPTIONAL,
printOutputBinSelect [6] PrintOutputBinSelect OPTIONAL,
printDuplexMode [7] PrintDuplexMode OPTIONAL,
printFaceUpMode [8] PrintFaceUpMode OPTIONAL,
printPriority [9] SimpleJobPriority OPTIONAL,
printStaplingSelect [10] PrintStaplingSelect OPTIONAL,
printFileName [11] DisplayString OPTIONAL

}

PrintDuplexMode ::= SEQUENCE
{

printDuplexModeSelect [0] PrintDuplexModeSelect,
bindingMargin [1] INTEGER OPTIONAL -- 0.1 mm

}

PrintDuplexModeSelect ::= ENUMERATED
{

simplex (0),
left-binding-duplex (1),
right-binding-duplex (2),
top-binding-duplex (3),
other (127)

}

PrinterErrorDescription ::= SEQUENCE
{

printerStatusCode [0] PrinterStatusCode,
systemError [1] DisplayString, -- detail description
others [2] DisplayString-- detail description

}

PrinterErrorDetail ::= SET OF PrinterErrorDescription

Salutation Architecture Specification V2.0c Part-2

214 06/01//99

PrinterStatusCode ::= ENUMERATED
{

noPaper (0),
noToner (1),
doorOpen (2),
jammed (3),
offline (4),
receiving (5),
error (6),
normal (7),
paperNearEnd (8),
tonerNearEnd (9),
fatalError (10), -- errors requiring equipment repair
others (127)

}

PrintFaceUpMode ::= ENUMERATED
{

faceDown (1),
faceUp (2),
other (127)

}

PrinterOperationStatus ::= SET OF PrinterStatusCode

PrinterPaperInputTray ::= SET OF PrinterPaperInputTrayStatus

PrinterPaperInputTrayStatus ::= SEQUENCE
{

printPaperInputSelect [0] PrintPaperInputSelect,
paperSize [1] PaperSize,
paperDirection [2] PaperDirection,
paperExistence [3] BOOLEAN OPTIONAL

-- If TRUE, input tray is not empty
-- If FALSE, input tray is empty

}

Salutation Architecture Specification V2.0c Part-2

215 06/01//99

PrintJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
requesterUserId [1] UserID,

-- "UserID" is set from the "UserID" specified in the Open
-- Service request that has established a service session.
-- Therefore, a client application must have registered as a
-- [Client] FU to actually specify its "User ID" value so that it
-- appears in the JobList.

jobStatusCode [2] JobStatusCode,
dataSize [3] INTEGER OPTIONAL,
queuedTime [4] DisplayStringOPTIONAL,
printPriority [5] SimpleJobPriority OPTIONAL,
printCopyCount [6] INTEGER OPTIONAL,
printPageCount [7] INTEGER OPTIONAL,
printFileName [8] DisplayString OPTIONAL

}

PrintJobList ::= SET OF PrintJobDescription

PrintOutputBinSelect ::= INTEGER -- equipment default bin is to be taken when Zero
-- (0) is specified.

PrintPaperOutputSelect ::= ENUMERATED
{

standard (0),
collatedSort (1),

-- corresponds to “putOutputPageCollated” of IETF RFC 1759.
-- page collation. Thus each stack contains identical pages.

stack (2),
nonCollatedSort (3),

-- corresponds to “putOutputDecollating” of IETF RFC 1759.
-- individual pages of multi-part form are separated and stored
-- into separate stacks for each part. Thus a stack contains a set of

other (127)
}

PrintPaperInputSelect ::= ENUMERATED
{

manualFeed (0),
tray-1 (1),
tray-2 (2),
tray-3 (3),
tray-4 (4),
tray-5 (5),
automaticSelect (126),

-- [Print] FU selects an input tray by PaperSize.
other (127)

}

Salutation Architecture Specification V2.0c Part-2

216 06/01//99

PrintStaplingSelect ::= ENUMERATED
{

nonStaple (0),
withStapleLeftCorner (1), -- UpperLeft Corner
withStapleRightCorner (2), -- UpperRight Corner
withStapleLeftSingle (3),
withStapleRightSingle (4),
withStapleTopSingle (5),
withStapleLeftDouble (6),
withStapleRightDouble (7),
withStapleTopDouble (8),
withStapleOthers (127)

}

6.2.2.2. [FAX Data Send] Functional Unit
CoverSheetGen ::= BOOLEAN

CSInfo ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
faxNumber [1] TelephoneNumberString,
subAddressNumber [2] DisplayString OPTIONAL,
name [3] DisplayString OPTIONAL,
section [4] DisplayString OPTIONAL,
company [5] DisplayString OPTIONAL,
phoneNumber [6] TelephoneNumberString OPTIONAL,
address [7] DisplayString OPTIONAL,
faxProtocol [8] FAXProtocol DEFAULT g3,
orderingData [9] TelephoneNumberString OPTIONAL

-- Ordering data is sent out by DTMF(Dual Tone Multi-
-- Frequency, G3) prior to G3 communication or UUI
-- (User User Information, G4) in G4 communication.

}

FaxControlAttribute ::= SEQUENCE
{

tsInfo [0] TSInfo OPTIONAL,
csInfoGroup [1] SET OF CSInfo,
requestPriority [2] SimpleJobPriority OPTIONAL,
retryCount [3] INTEGER OPTIONAL

}

FaxJobList ::= SET OF FaxJobDescription

Salutation Architecture Specification V2.0c Part-2

217 06/01//99

FaxJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
requesterUserId [1] UserID,

-- "UserID" is set from the "UserID" specified in the Open Service
-- request that has established a service session. Therefore, a client
-- application must have registered as a [Client] FU to actually
-- specify its "User ID" value so that it appears in the JobList.

jobStatusCode [2] JobStatusCode,
dataSize [3] INTEGER OPTIONAL,
numOfJobEntries [4] INTEGER OPTIONAL

}

FAXProtocol ::= ENUMERATED -- G3 is assumed when omitted.
{

g3 (1),
g4 (2),
auto (3) -- Automatic selection of FaxProtocol to be used

}

FaxSendErrorStatus ::= SEQUENCE
{

systemError [0] DisplayString, -- detail description
others [1] DisplayString-- detail description

}

FAXSendFreeStorageSize ::= INTEGER

FaxSendOrdering ::= BOOLEAN
-- FaxSendOrdering is used in, for example, facsimile network
-- and mail service. “phoneNumber” specifies a phone
-- number for a service and orderingData is for final recipient
-- number

FaxSendStatus ::= ENUMERATED
{

powerFailure (0),
warmingUp (1),
offline (2),
ready (3),
sending (4),
receiving (5),
error (6),
others (127)

}

NumOfCalledSubscribers ::= INTEGER

PageHeaderGen ::= BOOLEAN

Salutation Architecture Specification V2.0c Part-2

218 06/01//99

PersonalityProtocol ::= ENUMERATED
{

salutationFaxDataSend (1),
other (127)

}

TSInfo ::= SEQUENCE
{

name [0] DisplayString OPTIONAL,
section [1] DisplayString OPTIONAL,
company [2] DisplayString OPTIONAL,
phoneNumber [3] TelephoneNumberString OPTIONAL,
faxNumber [4] TelephoneNumberString OPTIONAL,
address [5] DisplayString OPTIONAL,
subject [6] DisplayString OPTIONAL,
coverSheetGen [7] CoverSheetGen OPTIONAL,
memoForCover [8] DisplayString OPTIONAL,
pageHeaderGen [9] PageHeaderGen OPTIONAL,
memoForHeader [10] DisplayString OPTIONAL

}

-- The following are for Future Study, and not referred to in this release.

-- EventHistory ::= (for further study)

-- FAXDataSendStatus ::= SET
-- {
-- serverStatus [0] ServerStatus OPTIONAL,
-- numberOfExistingJob [1] NumOfExistingJob OPTIONAL,
-- numberOfAvailJobEntry [2] NumOfAvailJobEntry OPTIONAL
-- }

-- FAXInfoItem ::= SET
-- {
-- faxDataSendStatus [0] FAXDataSendStatus OPTIONAL,
-- jobList [1] JobList OPTIONAL,
-- eventHistory [2] EventHistory OPTIONAL
-- for further study
-- }

-- ScheduledAfter ::= DisplayString -- "hh:mm:ss" format

-- ScheduledDateTime ::= DisplayString -- "yy mm dd hh:mm:ss zzz" format
-- zzz = JST, GMT, etc.

Salutation Architecture Specification V2.0c Part-2

219 06/01//99

-- ScheduledTime ::= CHOICE
-- {
-- [0] ScheduledDateTime,
-- [1] ScheduledAfter
-- }

-- SelectFAXInfoItem ::= ENUMERATED
-- {
-- faxDataSendStatus (1),
-- jobList (2),
-- eventHistory (3)
-- for further study
-- }

-- ServerStatus ::= DisplayString -- (further study for the detail)

-- TransmitSpeed ::= ENUMERATED
-- {
-- s2400 (1), -- If not specified, the speed is determined
-- s4800 (2), -- via the negotiation on the FAX protocol.
-- s7200 (3),
-- s9600 (4),
-- s12000 (5),
-- s14400 (6)
--}

6.2.2.3. [DOC Storage] Functional Unit
AccessMode ::= ENUMERATED
{

readOnly (1),
readWrite (2),
other (127)

}

DataContent ::= CHOICE
{

documentData [0] NULL, -- default (Content is document data)
fileData [1] FileData -- (Content is file data)

}

DataStoreMode ::= ENUMERATED
{

documentDataMode (1),
-- Non-transparent Mode

fileMode (2)
}

DocComment ::= DisplayString

Salutation Architecture Specification V2.0c Part-2

220 06/01//99

DocDescription ::= SEQUENCE
{

documentId [0] DocumentID,
ownerName [1] OwnerName OPTIONAL,
docComment [2] DocComment OPTIONAL,
createDateTime [3] DisplayString OPTIONAL,
size [4] INTEGER OPTIONAL,

-- size in bytes of this document
numberOfBlocks [5] INTEGER OPTIONAL,

-- size in blocks that may be useful in RetrieveDoc to specify
-- startDataBlock and endDataBlock parameter.

typeOfContent [6] DataContent OPTIONAL
}

DocList ::= SET OF DocDescription

DocumentID ::= INTEGER

FileData ::= SEQUENCE
{

fileName [0] DisplayString,
fileType [1] FileType OPTIONAL,
fileTitle [2] DisplayString OPTIONAL,
fileComment [3] DisplayString OPTIONAL,
fileCreateDateTime [4] DisplayString OPTIONAL,
fileSize [5] INTEGER OPTIONAL

-- file size in bytes
}

FileType ::= ENUMERATED
{

deviceDriver (0), -- Device Driver
applicationProgram (1), -- Application program
executable (2), -- Executable code
applicationData (3), -- Application data
other (127)

}

FolderComment ::= DisplayString

Salutation Architecture Specification V2.0c Part-2

221 06/01//99

FolderDescription ::= SEQUENCE
{

folderId [0] FolderID,
ownerName [1] OwnerName OPTIONAL,
folderComment [2] FolderComment OPTIONAL,
createDateTime [3] DisplayString OPTIONAL,
usedSize [4] INTEGER OPTIONAL,

-- size in bytes occupied by the documents in this folder
freeSize [5] INTEGER OPTIONAL,

-- size in bytes of free area in this folder
numberOfDocuments [6] INTEGER OPTIONAL

}

FolderID ::= INTEGER
-- FolderID=0 is used for Default Public Folder.

FolderList ::= SET OF FolderDescription

OperatorIntervention ::= SEQUENCE
{

requiredAction [0] DisplayString
}

OperatorInformation ::= SEQUENCE
{

information [0] DisplayString
}

OwnerName ::= DisplayString

PersonalityProtocol ::= ENUMERATED
{

salutationDocStorage (1),
other (127)

}

StorageSize ::= INTEGER

6.2.3. Voice Message Systems

6.2.3.1. [Voice Message Storage] Functional Unit
DeliveryGrade ::= ENUMERATED
{

urgent (0),
normal (1),
nonUrgent (2)

}

Salutation Architecture Specification V2.0c Part-2

222 06/01//99

DescriptiveComment ::= DisplayString

Encoding ::= SEQUENCE
{

encodingAlgorithm [0] EncodingAlgorithm,
samplingRate [1] SamplingRate OPTIONAL

}

EncodingAlgorithm ::= ENUMERATED
{

analog (0),
pcm (1),
u-law (2),
a-law (3),
adpcm (4),
cvsd (5),
apc-ab (6),
ld-celp (7),
v-celp (8),
others (127)

}

FolderID ::= INTEGER
-- FolderID=0 is used for Default Public Folder.

HeaderInformation ::= BIT STRING
{

senderId (0),
dateSent (1)

}

VMSJobList ::= SET OF VMSJobDescription

VMSJobDescription ::= SEQUENCE
{

jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
numOfJobEntries [2] INTEGER

}

PersonalityProtocol ::= ENUMERATED
{

SalutationVMS (1),
others (127)

}

Salutation Architecture Specification V2.0c Part-2

223 06/01//99

PlayVMStatus ::= ENUMERATED
{

playing (0),
suspended (1),
position (2),
error (3),
others (127)

}

Receiver ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
receiverId [1] CHOICE
{

userId [0] UserID,
telephoneNo [1] TelephoneNumberString

},
deferredDeliveryTime [2] UTCTime OPTIONAL

-- sender specifies the date and time up to which delivery
-- of the message should be deferred for this receiver

}

Recipient ::= SEQUENCE
{

jobEntryId [0] JobEntryID,
recipientId [1] UserID,
recipientType [2] ENUMERATED
{

primary (0),
copy (1),
blindCopy (2)

},
deferredDeliveryTime [3] UTCTime OPTIONAL

-- sender specifies the date and time up to which delivery
-- of the message should be deferred

}

SamplingRate ::= ENUMERATED
{

-- r4K (0),
-- r8K (1),
-- r16K (2),
r24K (3),
r32K (4)
-- r64K (5),
-- others (127)

}

Salutation Architecture Specification V2.0c Part-2

224 06/01//99

TextLanguage ::= DisplayString
-- Language tag which is defined in RFC 1766.
-- Language tag consists of primary tag which is ISO 639
-- language and secondary tag which is ISO 3166 country/area
-- in which the language is used.

VoiceMessageDataDescriptor ::= SEQUENCE
{

voiceMessageDataFormat [0] VoiceMessageDataFormat,
voiceMessageFormatInterpretation [1] VoiceMessageFormatInterpretation

}

VoiceMessageDataFormat ::= ENUMERATED
{

voiceMessage (0)
}

VoiceMessageDescriptor ::= SEQUENCE
{

voiceMsgId [0] VoiceMsgID,
descriptiveComment [1] DescriptiveComment OPTIONAL

}

VoiceMessageFormatInterpretation ::= CHOICE
{

voiceMessageEncoding [0] Encoding
}

VoiceMsgID ::= INTEGER

VoiceMsgList ::= SET OF VoiceMessageDescriptor

VoiceType ::= ENUMERATED
{

maleVoicePreferred (125),
femaleVoicePreferred (126),
dontCare (127)

}

6.2.4. Personal Information Systems

6.2.4.1. [Address Book] Functional Unit
ActiveEntries ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID

}

Salutation Architecture Specification V2.0c Part-2

225 06/01//99

ActiveEntriesFieldData ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
value [3] DisplayString

}

ActiveEntriesFieldDataList ::= SET OF ActiveEntriesFieldData

ActiveEntriesList ::= SET OF ActiveEntries

ActiveEntryData ::= SEQUENCE
{

groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
data [3] OCTET STRING

-- vCard format
}

BinaryEncoding ::= ENUMERATED
{

base64Encoding (0),
eightBit (1)

}

CodedEncoding ::= ENUMERATED
{

sevenBit (0),
base64Encoding (1),
quotedPrintable (2),
eightBit (3)

}

CompoundCompare ::= SEQUENCE
{

operand1 [0] SearchCondition,
connection [1] Connection,
operand2 [2] SearchCondition

}

Connection ::= ENUMERATED
{

andConnect (0),
orConnect (1)

}

Salutation Architecture Specification V2.0c Part-2

226 06/01//99

DataFormat ::= ENUMERATED
{

vCard (0)
}

EntryData ::= SEQUENCE
{

charSetID [0] CharSetID,
data [1] OCTET STRING

-- vCard format
}

EntryHandle ::= INTEGER

ExchangeDataFormat ::= CHOICE
{

vCard [0] VCardEncoding
}

GroupData ::= SET OF EntryData

GroupDescription ::= SEQUENCE
{

groupName [0] DisplayString,
writable [1] BOOLEAN DEFAULT FALSE

-- TRUE shows Group is writable
}

GroupHandle ::= INTEGER

GroupHandleList ::= SET OF GroupHandle

GroupList ::= SET OF GroupDescription

HowToCompare ::= ENUMERATED
{

equal (0),
notEqual (1),
greaterThan (2),
greaterThanOrEqualTo (3),
lessThan (4),
lessThanOrEqualTo (5)

}

NumberOfActiveEntries ::= INTEGER

Salutation Architecture Specification V2.0c Part-2

227 06/01//99

PersonalityProtocol ::= ENUMERATED
{

SalutationAddressBook (1),
others (127)

}

SearchCondition ::= CHOICE
{

simpleFieldCompare [0] SimpleFieldCompare,
compoundCompare [1] CompoundCompare

}

SearchHandle ::= INTEGER

SearchSupport ::= BOOLEAN

SimpleFieldCompare ::= SEQUENCE
{

howToCompare [0] HowToCompare,
fieldName [1] DisplayString,

-- Field Name (Parameter, Parameter,..)
-- Encoded by 8859-1 (US ASCII) character set

value [2] DisplayString
-- Only String data can be searched.
-- Encoded by the specified character set

}

Sort ::= ENUMERATED
{

ascendingBitOrder (0),
descendingBitOrder (1),
weightingFactor (2),
others (127)

}

SortSupport ::= BOOLEAN

VCardEncoding ::= SEQUENCE
{

codedEncoding [0] CodedEncoding,
binaryEncoding [1] BinaryEncoding

}

Salutation Architecture Specification V2.0c Part-2

228 06/01//99

7. Message

7.1. Message Header
MsgHeader ::= SEQUENCE -- The following components are
{ -- included in every message.

msgSeqId INTEGER
-- >0 : client initiating message sequence
-- <0 : server initiating message sequence

-- WARNING : Other components may be added here in future versions of architecture.
-- Implementations should take this enhancement possibility into account.

}

7.2. Common

7.2.1. ACK, NACK
ACK ::= [APPLICATION tagACK] SEQUENCE
{

COMPONENTS OF MsgHeader,
parameter1 [0] ANY OPTIONAL,
parameter2 [1] ANY OPTIONAL,
parameter3 [2] ANY OPTIONAL
-- : :
-- The number and data type of parameters depend on the associated command, and are defined
-- by the specification of each associated command.

}

NACK ::= [APPLICATION tagNACK] SEQUENCE
{

COMPONENTS OF MsgHeader,
returnCode [0] ReturnCode,
descriptor [1] OCTET STRING OPTIONAL

-- Additional information for the reason of rejection.
-- Debug/diagnostics purpose. May be ignored.

}

7.2.2. Data Transfer
RequestDataTransfer ::= [APPLICATION tagRequestDataTransfer] SEQUENCE
{

COMPONENTS OF MsgHeader,
dataHandle [0] DataHandle OPTIONAL

}

Salutation Architecture Specification V2.0c Part-2

229 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidDataHandle dataHandle is unknown or missing when required 128

rcDataTransferAborted Data transfer aborted by a sender 129

DataBlockDescription ::= [APPLICATION tagDataBlockDescription] SEQUENCE
{

COMPONENTS OF MsgHeader,
dataDescriptor [0] CHOICE
{

document [0] DocumentDataDescriptor,
file [1] FileData

}
}

NACK Response

Name Description ReturnCode

rcInvalidDataDescriptor dataDescriptor is incorrect or not supported 128

rcDataTransferAborted Data transfer aborted by a receiver 129

TransferDataBlock ::= [APPLICATION tagTransferDataBlock] SEQUENCE
{

COMPONENTS OF MsgHeader,
beginDataBlock [0] BOOLEAN,
endDataBlock [1] BOOLEAN,
lastSegment [2] BOOLEAN, -- TRUE in the last data block segment of the

-- last data block of “data”
dataBlockBody [3] OCTET STRING

}

NACK Response

Name Description ReturnCode

rcInvalidBeginEndFlag begin/endDataBlock flag is out of sequence

endDataBlock=FALSE when lastSegment=TRUE

128

rcInvalidDataBlockBody Data content is incorrect or not supported (Note:
applicable only when data content is immediately
examined by the data receiver)

129

rcDataTransferAborted Data transfer aborted by a receiver 130

Salutation Architecture Specification V2.0c Part-2

230 06/01//99

RequestNextData ::= [APPLICATION tagRequestNextData] SEQUENCE
{

COMPONENTS OF MsgHeader
}

NACK Response

Name Description ReturnCode

rcDataTransferAborted Data transfer aborted by a sender 128

7.2.3. Attribute Repository
GetPrivateAttribute ::= [APPLICATION tagGetPrivateAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeIdList [0] SET OF AttributeID

}

ACK Response

Parameter Name Data Type Note

parameter1 AttributeList

NACK Response

No message-specific return code

GetGlobalAttribute ::= [APPLICATION tagGetGlobalAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeIdList [0] SET OF AttributeID

}

ACK Response

Parameter Name Data Type Note

parameter1 AttributeList

NACK Response

No message-specific return code

Salutation Architecture Specification V2.0c Part-2

231 06/01//99

SetPrivateAttribute ::= [APPLICATION tagSetPrivateAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
attributeList [0] SET OF SEQUENCE
{

attributeId [0] AttributeID,
attributeValue [1] ANY OPTIONAL

-- Type is defined by each attribute.
-- If omitted, attribute is deleted.

}
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidAttributeId attributeId is incorrect or not supported 128

rcInvalidAttributeValue attributeValue is incorrect or not supported 129

7.2.4. Job-Related
QueryJobStatus ::= [APPLICATION tagQueryJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

ACK Response

Parameter Name Data Type Note

parameter1 JobStatusCode

parameter2 ReasonCode Optional

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

Salutation Architecture Specification V2.0c Part-2

232 06/01//99

QueryJobEntryStatus ::= [APPLICATION tagQueryJobEntryStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID OPTIONAL

-- If omitted, the status of all the job entries is requested.
}

ACK Response

Parameter Name Data Type Note

parameter1 JobStatusCode, or JobEntriesStatus

parameter2 ReasonCode Optional

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobEntryId jobEntryId is unknown 129

NotifyJobStatus ::= [APPLICATION tagNotifyJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobStatusCode [1] JobStatusCode,
reasonCode [2] ReasonCode OPTIONAL

-- present only if jobStatusCode=suspended or error
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is incorrect or unknown 128

rcInvalidJobStatusCode jobStatusCode is incorrect or not supported 131

rcInvalidReasonCode reasonCode is incorrect or not supported or
missing when required

132

Salutation Architecture Specification V2.0c Part-2

233 06/01//99

NotifyJobEntryStatus ::= [APPLICATION tagNotifyJobEntryStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
jobStatusCode [2] JobStatusCode,
reasonCode [3] ReasonCode OPTIONAL

-- present only if jobStatusCode=suspended or error
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is incorrect or unknown 128

rcInvalidJobEntryId jobEntryId is incorrect or unknown 129

rcInvalidJobStatusCode jobStatusCode is incorrect or not supported 131

rcInvalidReasonCode reasonCode is incorrect or not supported or
missing when required

132

ChangeJobAttribute ::= [APPLICATION tagChangeJobAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
attributeId [1] AttributeID,
attributeValue [2] ANY

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcJobAlreadyExecuted Job is being executed (or completed) and it is too
late to change the attribute value

130

rcInvalidAttributeId attributeId is incorrect or not supported 133

rcInvalidAttributeValue attributeValue is incorrect or not supported 134

Salutation Architecture Specification V2.0c Part-2

234 06/01//99

ChangeJobEntryAttribute ::= [APPLICATION tagChangeJobEntryAttribute] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
attributeId [2] AttributeID,
attributeValue [3] ANY

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobEntryId jobEntryId is unknown 129

rcJobAlreadyExecuted Job is being executed (or completed) and it is too
late to change the attribute value

130

rcInvalidAttributeId attributeId is incorrect or not supported 133

rcInvalidAttributeValue attributeValue is incorrect or not supported 134

SuspendJob ::= [APPLICATION tagSuspendJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcJobAlreadyExecuted Job has already been executed 130

Salutation Architecture Specification V2.0c Part-2

235 06/01//99

SuspendJobEntry ::= [APPLICATION tagSuspendJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobEntryId jobEntryId is unknown 129

rcJobAlreadyExecuted Job entry has already been executed 130

ResumeJob ::= [APPLICATION tagResumeJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcJobAlreadyExecuted Job has already been executed 130

ResumeJobEntry ::= [APPLICATION tagResumeJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

236 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobEntryId jobEntryId is unknown 129

rcJobAlreadyExecuted Job entry has already been executed 130

CancelJob ::= [APPLICATION tagCancelJob] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
abort [1] BOOLEAN

-- if TRUE, job is canceled either queued or being executed
-- if FALSE, job is canceled only if execution has not started

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcJobAlreadyExecuted Job has already been executed 130

CancelJobEntry ::= [APPLICATION tagCancelJobEntry] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobEntryId [1] JobEntryID,
abort [2] BOOLEAN

-- if TRUE, job is canceled either queued or being executed
-- if FALSE, job is canceled only if execution has not started

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

237 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobEntryId jobEntryId is unknown 129

rcJobAlreadyExecuted Job entry has already been executed 130

FreeJobHandle ::= [APPLICATION tagFreeJobHandle] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcJobNotCompleted Job execution has not completed yet 135

StartMonitorJobStatus ::= [APPLICATION tagStartMonitorJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle,
jobStatusNotificationMode [1] JobStatusNotificationMode

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

rcInvalidJobStatusNotificationMode jobStatusNotificationMode is incorrect 136

Salutation Architecture Specification V2.0c Part-2

238 06/01//99

CancelMonitorJobStatus ::= [APPLICATION tagCancelMonitorJobStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
jobHandle [0] JobHandle

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidJobHandle jobHandle is unknown 128

7.2.5. Dynamic Status
QueryDynamicStatus ::= [APPLICATION tagQueryDynamicStatus] SEQUENCE
{

COMPONENTS OF MsgHeader,
dynamicStatusId [0] DynamicStatusID

}

ACK Response

Parameter Name Data Type Note

parameter1 ANY

NACK Response

Name Description ReturnCode

rcInvalidDynamicStatusId dynamicStatusId is incorrect or not supported 129

SubscribeEvent ::= [APPLICATION tagSubscribeEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
eventList [0] SET OF DynamicStatusID,
life [1] Life,
checkInterval [2] INTEGER OPTIONAL

-- Interval (in seconds) for the FU-side SLM to periodically
-- check the availability of the [Client] FU to receive the job
-- status notification
-- This parameter shall be present if life = persistent.
-- This parameter shall be omitted if life = session.

}

Salutation Architecture Specification V2.0c Part-2

239 06/01//99

ACK Response

Parameter Name Data Type Note

parameter1 SubscriptionHandle

NACK Response

Name Description ReturnCode

rcInvalidDynamicStatusId eventList contains one or more incorrect or
unsupported dynamicStatusId

129

rcInvalidLife life is incorrect or not supported 131

rcInvalidCheckInterval checkInterval is incorrect or not supported 132

NotifyEvent ::= [APPLICATION tagNotifyEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
subscriptionHandle [0] SubscriptionHandle,
dynamicStatusId [1] DynamicStatusID,
dynamicStatusValue [2] ANY

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidSubscriptionHandle subscriptionHandle is unknown 128

rcInvalidDynamicStatusId dynamicStatusId is incorrect or not supported 129

rcInvalidDynamicStatusValue dynamicStatusValue is incorrect or not supported 130

UnsubscribeEvent ::= [APPLICATION tagUnsubscribeEvent] SEQUENCE
{

COMPONENTS OF MsgHeader,
subscriptionHandle [0] SubscriptionHandle

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

240 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidSubscriptionHandle subscriptionHandle is unknown 128

7.2.6. Vendor Escape
VendorEscape ::= [APPLICATION tagVendorEscape] SEQUENCE
{

COMPONENTS OF MsgHeader,
parameter [0] ANY

}

7.3. Document Systems

7.3.1. [Print] Functional Unit
Print ::= [APPLICATION tagPrint] SEQUENCE
{

COMPONENTS OF MsgHeader,
modeOfDataTransfer [0] DataTransferMode OPTIONAL,

-- Override Global/Private Attribute
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Omitted in immediate mode data transfer from client, or
-- if the source data location is specified by URL

inputDocumentFormat [3] DocumentDataDescriptor OPTIONAL,
-- Present if and only if dataSource = url

life [4] Life DEFAULT job,
-- Specify how long FU should keep a job status:
-- for job life or for session life or persistently.

jobStatusNotificationMode [5] JobStatusNotificationMode OPTIONAL,
-- If omitted, no notification is made.

notificationScheme [6] NotificationScheme OPTIONAL,
-- Omitted unless the job status notifications are to be
-- sent to a [Client] FU other than the client that is
-- sending this command

printControlAttribute [7] PrintControlAttribute OPTIONAL
}

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

Salutation Architecture Specification V2.0c Part-2

241 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidModeOfDataTransfer modeOfDataTransfer is incorrect or not supported 129

rcInvalidDataSource dataSource is incorrect or not supported 130

rcInvalidDataHandle dataHandle is incorrect 131

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

132

rcInvalidLife life is incorrect or not supported 133

rcInvalidJobStatusNotificationMode jobStatusNotificationMode is incorrect or not
supported

134

rcInvalidNotificationScheme notificationScheme is incorrect or not supported 135

rcInvalidPaperSize printPaperSize is incorrect or not supported 136

rcInvalidResolution printResolution is incorrect or not supported 137

rcInvalidPaperDirection printPaperDirection is incorrect or not supported 138

rcInvalidCopyCount printCopyCount is incorrect or not supported 139

rcInvalidPaperInputSelect printPaperInputSelect is incorrect or not
supported

140

rcInvalidPaperOutputSelect printPaperOutputSelect is incorrect or not
supported

141

rcInvalidOutputBinSelect printOutputBinSelect is incorrect or not supported 142

rcInvalidDuplexMode printDuplexMode is incorrect or not supported 143

rcInvalidFaceUpMode printFaceUpMode is incorrect or not supported 144

rcInvalidPriority printPriority is incorrect or not supported 145

rcInvalidStaplingSelect printStaplingSelect is incorrect or not supported 146

Job-Specific ReasonCode

Name Description ReasonCode

suspendedByClientRequest suspended by SuspendJob command 128

temporaryBusy suspended due to equipment temporary busy. 129

waitingForRetry in waiting mode for retry. 130

retryOut terminated due to retry out of printing attempts. 131

printerError terminated due to equipment detected errors, e.g.,
noPaper, noToner, and etc..

132

Salutation Architecture Specification V2.0c Part-2

242 06/01//99

ListPrintJob ::= [APPLICATION tagListPrintJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcNoJob there is no job 128

7.3.2. [FAX Data Send] Functional Unit
SendFAX ::= [APPLICATION tagSendFAX] SEQUENCE
{

COMPONENTS OF MsgHeader,
modeOfDataTransfer [0] DataTransferMode OPTIONAL,

-- Override Global / Private Attribute
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Omitted in immediate mode data transfer from client, or
-- if the source data location is specified by URL

inputDocumentFormat [3] DocumentDataDescriptor OPTIONAL,
-- Present if and only if dataSource = url

life [4] Life DEFAULT job,
-- Specify how long FU should keep a job status:
-- for job life or for session life or persistently.

jobStatusNotificationMode [5] JobStatusNotificationMode OPTIONAL,
-- If omitted, no notification is made.

notificationScheme [6] NotificationScheme OPTIONAL,
-- Omitted unless the job status notifications are to be
-- sent to a [Client] FU other than the client that is
-- sending this command

faxControlAttribute [7] FaxControlAttribute
}

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

Salutation Architecture Specification V2.0c Part-2

243 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidModeOfDataTransfer modeOfDataTransfer is incorrect or not supported 128

rcInvalidDataSource dataSource is incorrect or not supported 129

rcInvalidDataHandle dataHandle is incorrect 130

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

131

rcInvalidLife life is incorrect or not supported 132

rcInvalidJobStatusNotificationMode jobStatusNotificationMode is incorrect or not
supported

133

rcInvalidNotificationScheme notificationScheme is incorrect or not supported 134

rcInvalidCoverSheetGen coverSheetGen is incorrect or not supported 135

rcInvalidPageHeaderGen pageHeaderGen is incorrect or not supported 136

rcTooManyCalledSubscribers The number of called subscribers exceeds the
limit

137

rcInvalidFaxNumber faxNumber is incorrect 138

rcInvalidSubAddressNumber subAddressNumber is incorrect 139

rcInvalidFaxProtocol faxProtocol is incorrect or not supported 140

rcInvalidOrderingData orderingData is incorrect or not supported 141

rcInvalidRequestPriority requestPriority is incorrect or not supported 142

rcInvalidRetryCount retryCount is incorrect or not supported 143

Salutation Architecture Specification V2.0c Part-2

244 06/01//99

Job-Specific ReasonCode

Name Description ReasonCode

timeOut time-out detected during get-line. (When zero is
specified in retryCount)

128

retryOut terminated due to retry out. (When zero is
specified for retryCount, this parameter is not
returned. Instead calledSubscriberBusy or
timeOut is returned,)

129

calledSubscriberBusy busy status detected for called subscriber. 130

modemShiftDownFailed connection failed with the lowest speed. 131

callSetUpFailed call setup failed. 132

negotiationFailed negotiation failed. 133

notReceiveExpectedFrame expecting frame(s) not received on G3 protocol. 134

receiveUnexpectedFrame unexpected frame(s) received on G3 protocol. 135

thirdTryFail retried-out during G3 protocol. 136

waitingForRetry in waiting mode for retry. 137

ListFaxJob ::= [APPLICATION tagListFaxJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcNoJob there is no job 128

Salutation Architecture Specification V2.0c Part-2

245 06/01//99

7.3.3. [DOC Storage] Functional Unit
RetrieveDoc ::= [APPLICATION tagRetrieveDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID,
dataDestination [2] DataLocation DEFAULT client,
startDataBlock [3] INTEGER DEFAULT 1,

-- If omitted, the document is retrieved
-- from the first data block.

endDataBlock [4] INTEGER OPTIONAL
-- If omitted, the document is retrieved
-- through the last data block.

}

ACK Response

Parameter Name Data Type Note

parameter1 DataHandle Optional

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

rcInvalidDataDestination dataDestination is incorrect or not supported 131

rcInvalidStartDataBlock startDataBlock is incorrect 132

rcInvalidEndDataBlock endDataBlock is incorrect 133

Salutation Architecture Specification V2.0c Part-2

246 06/01//99

StoreDoc ::= [APPLICATION tagStoreDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
dataSource [1] DataLocation DEFAULT client,
dataHandle [2] DataHandle OPTIONAL,

-- Exists only if dataSource=functionalUnit
modeOfStore [3] DataStoreMode OPTIONAL,

-- Override Global / Private Attribute
inputDocumentFormat [4] DocumentDataDescriptor OPTIONAL,

-- Present if and only if dataSource = url
ownerName [5] OwnerName OPTIONAL,
docComment [6] DocComment OPTIONAL,
typeOfContent [7] DataContent OPTIONAL

}

ACK Response

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcAccessRejected access is not authorized for the user 130

rcInvalidDataSource dataSource is incorrect or not supported 131

rcInvalidDataHandle dataHandle is unknown 132

rcInvalidModeOfStore modeOfStore is incorrect or not supported 133

rcInvalidInputDocumentFormat inputDocumentFormat is incorrect or not
supported

134

rcStorageFull storage is full 135

rcInvalidTypeOfContent typeOfContent is incorrect or not supported 136

DeleteDoc ::= [APPLICATION tagDeleteDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

247 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

CopyDoc ::= [APPLICATION tagCopyDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
sourceFolder [0] FolderID,
documentId [1] DocumentID,
destinationFolder [2] FolderID OPTIONAL,

-- if omitted, the same as sourceFolder
updateDateTime [3] BOOLEAN DEFAULT FALSE

-- if TRUE, update the document’s
-- creationDateTime with the current time.
-- if FALSE or omitted, use the document’s
-- old creationDateTime.

}

ACK Response

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Name Description ReturnCode

rcInvalidSourceFolderId sourceFolder is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcSourceAccessRejected access to the source folder/document is not
authorized for the user

130

rcInvalidDestinationFolderId destinationFolder is unknown 131

rcDestinationAccessRejected access to the destination folder is not authorized
for the user

132

Salutation Architecture Specification V2.0c Part-2

248 06/01//99

MoveDoc ::= [APPLICATION tagMoveDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
sourceFolder [0] FolderID,
documentId [1] DocumentID,
destinationFolder [2] FolderID OPTIONAL,

-- if omitted, the same as sourceFolder
updateDateTime [3] BOOLEAN DEFAULT FALSE

-- if TRUE, update the document’s
-- creationDateTime with the current time.
-- if FALSE or omitted, use the document’s
-- old creationDateTime.

}

ACK Response

Parameter Name Data Type Note

parameter1 DocumentID

NACK Response

Name Description ReturnCode

rcInvalidSourceFolderId sourceFolder is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcSourceAccessRejected access to the source folder/document is not
authorized for the user

130

rcInvalidDestinationFolderId destinationFolder is unknown 131

rcDestinationAccessRejected access to the destination folder is not authorized
for the user

132

ChangeDocDesc ::= [APPLICATION tagChangeDocDesc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
documentId [1] DocumentID,
ownerName [2] OwnerName OPTIONAL,
docComment [3] DocComment OPTIONAL

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

249 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown 128

rcInvalidDocumentId documentId is unknown 129

rcAccessRejected access is not authorized for the user 130

CreateFolder ::= [APPLICATION tagCreateFolder] SEQUENCE
{

COMPONENTS OF MsgHeader,
ownerName [0] OwnerName OPTIONAL,
folderComment [1] FolderComment OPTIONAL

}

ACK Response

Parameter Name Data Type Note

parameter1 FolderID

NACK Response

No message-specific return code

ChangeFolderDesc ::= [APPLICATION tagChangeFolderDesc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
ownerName [1] OwnerName OPTIONAL,
folderComment [2] FolderComment OPTIONAL

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

Salutation Architecture Specification V2.0c Part-2

250 06/01//99

ListFolder ::= [APPLICATION tagListFolder] SEQUENCE
{

COMPONENTS OF MsgHeader
}

ACK Response

No parameter

NACK Response

No message-specific return code

DeleteFolder ::= [APPLICATION tagDeleteFolder] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

-- Folder should be empty before deleted.
}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

rcFolderNotEmpty folder contains document(s) 131

ListFolderDoc ::= [APPLICATION tagListFolderDoc] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

251 06/01//99

NACK Response

Name Description ReturnCode

rcInvalidFolderId folderId is unknown or incorrect (0) 128

rcAccessRejected access is not authorized for the user 130

7.4. Voice Message Systems

7.4.1. [Voice Message Storage] Functional Unit
ListFolderContentVM ::= [APPLICATION tagListFolderContentVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID

}

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder is not authorized 139

SendVM ::= [APPLICATION tagSendVM] SEQUENCE
{ COMPONENTS OF MsgHeader,

folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
recipients [2] SET OF Recipient,
deliveryGrade [3] DeliveryGrade OPTIONAL,

-- sender specifies the grade of delivery. This information
-- is for the mail server

priorityLevel [4] SimpleJobPriority OPTIONAL,
-- sender specifies the priority level of the message. This
-- information is for the receiver

subject [5] DisplayString OPTIONAL
-- sender specifies the subject of the message.
-- maximum 256 characters

}

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

Salutation Architecture Specification V2.0c Part-2

252 06/01//99

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder is not authorized 139

rcInvalidVoiceMsgId Specified Voice Message not found 148

rcInvalidRecipientId Specified recipientId is invalid 168

rcInvalidRecipientType Specified recipientType is invalid 169

rcInvalidDeferredDeliveryTime Specified deferredDeliveryTime is invalid 188

rcInvalidDeliveryGrade Specified delivery grade not valid 189

rcInvalidPriorityLevel Specified priority level not valid 190

rcInvalidSubject Specified subject not valid 191

PlayVM ::= [APPLICATION tagPlayVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
voiceMsgId [1] VoiceMsgID,
receivers [2] SET OF Receiver,
headerInformation [3] HeaderInformation OPTIONAL,
voiceDuration [4] INTEGER OPTIONAL,
voiceSpeed [5] INTEGER OPTIONAL,
voiceVolume [6] INTEGER OPTIONAL

}

ACK Response

Parameter Name Data Type Note

parameter1 JobHandle

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder is not authorized 139

rcInvalidVoiceMessageId Specified Voice Message not found 148

rcInvalidReceiver Specified receiver is not valid 170

rcInvalidDeferredDeliveryTime Specified deferredDeliveryTime is not valid 188

rcInvalidHeaderInfo Specified header information not valid 192

rcInvalidVoiceDuration Specified voice duration not valid 200

Salutation Architecture Specification V2.0c Part-2

253 06/01//99

rcInvalidVoiceSpeed Specified voice speed not valid 201

rcInvalidVoiceVolume Specified voice volume not valid 202

Job-Specific ReasonCode

Name Description ReasonCode

equipmentError terminated due to equipment detected errors. 128

waitingForRetry in waiting mode for retry call. 129

SynthesizeVM ::= [APPLICATION tagSynthesizeVM] SEQUENCE
{

COMPONENTS OF MsgHeader,
folderId [0] FolderID,
text [1] DisplayString,
textLanguage [2] TextLanguage OPTIONAL,
voiceMessageDataDescriptor [3] VoiceMessageDataDescriptor OPTIONAL,
voiceType [4] VoiceType OPTIONAL,
voiceSpeed [5] INTEGER OPTIONAL,
voiceVolume [6] INTEGER OPTIONAL

}

ACK Response

Parameter Name Data Type Note

parameter1 VoiceMsgID

NACK Response

Name Description ReturnCode

rcFolderNotFound Specified folder does not exist 138

rcFolderAccessRejected Access to folder is not authorized 139

rcInvalidText Text data is not valid 218

rcInvalidTextLanguage Text language is not valid 210

rcInvalidEncodingAlgo Specified encoding algorithm not valid 203

rcInvalidSamplingRate Specified sampling rate not valid 204

rcInvalidVoiceType Specified voice type not valid 205

rcInvalidVoiceMessageDescriptor Specified VoiceMessageDescriptor not valid 206

rcInvalidVoiceMessageDataFormat Specified VoiceMessageDataFormat not valid 207

rcInvalidVoiceMessageFormatInter
pretation

Specified VoiceMessageFormatInterpretation not
valid

208

rcInvalidVoiceSpeed Specified voice speed not valid 201

rcInvalidVoiceVolume Specified voice volume not valid 202

Salutation Architecture Specification V2.0c Part-2

254 06/01//99

ListVMSJob ::= [APPLICATION tagListVMSJob] SEQUENCE
{

COMPONENTS OF MsgHeader
}
ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcNoJob There is no job 128

7.5. Personal Information Systems

7.5.1. [Address Book] Functional Unit
ListGroups ::= [APPLICATION tagListGroups] SEQUENCE
{

COMPONENTS OF MsgHeader
}

NACK Response

No message-specific return code

OpenGroup ::= [APPLICATION tagOpenGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupName [0] DisplayString,
readWriteAccess [1] BOOLEAN DEFAULT FALSE

-- TRUE shows Writable access
}

ACK Response

Parameter Name Data Type Note

parameter-1 GroupHandle

parameter-2 ReturnCode (rcBeingModified, ENUMERATED
(148))

The Group is
being opened
for read/write
operation by
another client.

NACK Response

Salutation Architecture Specification V2.0c Part-2

255 06/01//99

Name Description ReturnCode

rcNoGroup There is not specified Group. 138

rcInvalidAccessMode Access mode is not valid. 139

rcCanNotBeOpened The Group can not be opened. 140

rcBeingModified The Group is already opened for read/write
operation

148

CloseGroup ::= [APPLICATION tagCloseGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid 141

CreateGroup ::= [APPLICATION tagCreateGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupName [0]DisplayString

}

ACK Response

Parameter Name Data Type Note

parameter-1 GroupHandle

NACK Response

Name Description ReturnCode

rcGroupAlreadyExist Specified Group name already exists in an FU. 144

Salutation Architecture Specification V2.0c Part-2

256 06/01//99

DeleteGroup ::= [APPLICATION tagDeleteGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcGroupHasEntry Specified Group has an Entry. 145

rcInvalidGroupHandle Specified Group Handle is invalid. 141

RenameGroup ::= [APPLICATION tagRenameGroup] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
newName [1] DisplayString

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcGroupAlreadyExist Specified Group name already exists in an FU. 144

rcOperationNotPermitted Operation to the Group is not permitted. 146

GetGroupData ::= [APPLICATION tagGetGroupData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
exchangeDataFormat [1] ExchangeDataFormat

}

NACK Response

Salutation Architecture Specification V2.0c Part-2

257 06/01//99

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidExchangeDataFormat Specified exchange data format is invalid. 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

ListActiveEntries ::= [APPLICATION tagListActiveEntries] SEQUENCE
{

COMPONENTS OF MsgHeader
}

NACK Response

Name Description ReturnCode

rcNoActiveEntries There is no active Entries. 178

rcCommandNotSupported Command for Entry Operation is not supported. 218

GetEntryData ::= [APPLICATION tagGetEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
exchangeDataFormat [2] ExchangeDataFormat

}

NACK Response

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid 141

rcInvalidEntryHandle Specified Entry Handle is invalid 179

rcInvalidExchangeDataFormat Specified exchange data format is invalid 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

rcCommandNotSupported Command for Entry Operation is not supported. 218

Salutation Architecture Specification V2.0c Part-2

258 06/01//99

GetActiveEntryData ::= [APPLICATION tagGetActiveEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
position [0] INTEGER,
exchangeDataFormat [1] ExchangeDataFormat

}

NACK Response

Name Description ReturnCode

rcInvalidPosition Specified position is invalid. 180

rcNoActiveEntries There is no active Entries. 178

rcInvalidExchangeDataFormat Specified exchange data format is invalid. 168

rcExchangeDataFormatNotSupport
ed

Specified exchange data format is not supported. 169

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcBinaryEncodingNotSupported Specified Binary encoding is not supported. 171

rcCommandNotSupported Command for Entry Operation is not supported. 218

AddEntryData ::= [APPLICATION tagAddEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
charSetID [1] CharSetID,
dataFormat [2] DataFormat,
data [3] OCTET STRING

-- vCard format
}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

NACK Response

Salutation Architecture Specification V2.0c Part-2

259 06/01//99

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcNoRoomToAddReplace The Group has no room to add an Entry data. 147

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidDataFormat Specified data format is invalid or not supported. 167

rcInvalidReceivedDataFormat Received data format is invalid. 181

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry Operation is not supported. 218

DeleteEntryData ::= [APPLICATION tagDeleteEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER

}

ACK Response

No parameter

NACK Response

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcCommandNotSupported Command for Entry Operation is not supported. 218

ReplaceEntryData ::= [APPLICATION tagReplaceEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
groupHandle [0] INTEGER,
entryHandle [1] INTEGER,
charSetID [2] CharSetID,
dataFormat [3] DataFormat,
data [4] OCTET STRING

-- vCard format
}

ACK Response

No parameter

Salutation Architecture Specification V2.0c Part-2

260 06/01//99

NACK Response

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcNoRoomToAddReplace The Group has no room to replace an Entry data. 147

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidDataFormat Specified data format is invalid or not supported. 167

rcInvalidReceivedDataFormat Received data format is invalid. 181

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry Operation is not supported. 218

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

MoveEntryData ::= [APPLICATION tagMoveEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fromGroupHandle [0] INTEGER,
fromEntryHandle [1] INTEGER,
toGroupHandle [2] INTEGER

}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

NACK Response

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidFromGroupHandle Specified ‘from’ Group Handle is invalid. 142

rcInvalidToGroupHandle Specified ‘to’ Group Handle is invalid. 143

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcCommandNotSupported Command for Entry Operation is not supported. 218

Salutation Architecture Specification V2.0c Part-2

261 06/01//99

CopyEntryData ::= [APPLICATION tagCopyEntryData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fromGroupHandle [0] INTEGER,
fromEntryHandle [1] INTEGER,
toGroupHandle [2] INTEGER

}

ACK Response

Parameter Name Data Type Note

parameter-1 EntryHandle

NACK Response

Name Description ReturnCode

rcOperationNotPermitted Operation to the Group is not permitted. 146

rcInvalidFromGroupHandle Specified ‘from’ Group Handle is invalid. 142

rcInvalidToGroupHandle Specified ‘to’ Group Handle is invalid. 143

rcInvalidEntryHandle Specified Entry Handle is invalid. 179

rcInvalidGroupHandle Specified to Group Handle is invalid. 141

rcCommandNotSupported Command for Entry Operation is not supported. 218

SearchFieldData ::= [APPLICATION tagSearchFieldData] SEQUENCE
{

COMPONENTS OF MsgHeader,
searchHandle [0] INTEGER,
charSetID [1] CharSetID,

-- to specify the Entry which data is encoded by this character set
codedEncoding [2] CodedEncoding,

-- Value to be compare is encoded by specified encoding.
searchCondition [3] SearchCondition,
groupHandleList [4] GroupHandleList OPTIONAL

-- Optional for search operation to current Active Entries
}

ACK Response

Parameter Name Data Type Note

parameter-1 SearchHandle

parameter-2 NumberOfActiveEntries

NACK Response

Salutation Architecture Specification V2.0c Part-2

262 06/01//99

Name Description ReturnCode

rcInvalidGroupHandle Specified Group Handle is invalid. 141

rcInvalidSearchHandle Specified Search Handle is invalid. 182

rcInvalidCharacterSet Specified Character set is not same as current
active Entries.

173

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcDataNotFound Data not found. 183

rcCharacterSetNotSupported Specified Character set is not supported 172

rcCommandNotSupported Command for Entry/Field Operation is not
supported.

218

GetActiveEntriesFieldData ::= [APPLICATION tagGetActiveEntriesFieldData] SEQUENCE
{

COMPONENTS OF MsgHeader,
fieldName [0] DisplayString,

-- Field Name (Parameter, Parameter,..)
-- Encoded by 8859-1 (US ASCII) character set

codedEncoding [1] CodedEncoding,
sort [2] Sort OPTIONAL

}

NACK Response

Name Description ReturnCode

rcInvalidFieldName Specified Field name is invalid. 208

rcFieldDataNotFound Specified Field data not found. 209

rcCodedEncodingNotSupported Specified Coded encoding is not supported. 170

rcSortNoSupport Sort operation is not supported. 210

rcNoActiveEntries There is no active Entries. 178

rcCommandNotSupported Command for Entry/Field Operation is not
supported.

218

Salutation Architecture Specification V2.0c Part-2

263 06/01//99

8. Functional Unit ID

Functional Unit Name ID

Wild (for use with QueryCapability) 0

[Client] 1000

[Print] 10000

[Document Storage] 11000

[FAX Data Send] 12000

[FAX Data] 13000

[Voice Message Storage] 20000

[Address Book] 30000

Salutation Architecture Specification V2.0c Part-2

264 06/01//99

9. Attribute & Dynamic Status ID

9.1. Range of Number Assignments

Functional Unit Minimum Maximum

Common to All Functional Unit Types 0 999

[Client] 1000 1999

[Print] 10000 10999

[DOC Storage] 11000 11999

[FAX Data Send] 12000 12999

[FAX Data] 13000 13999

[Voice Message Storage] 20000 20999

[Address Book] 30000 30999

9.2. Common
Capability Attribute Name ID Data Type Compare Function ID

Major version 10 INTEGER intEqualTo

Minor version 11 INTEGER intGreaterThanOrEqualTo

Default coded character set 20 CharSetID intEqualTo

FU name 30 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer name 40 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer product name 41 DisplayString (SIZE(0..63)) strEqualTo

Manufacturer product version 42 DisplayString (SIZE(0..63)) strEqualTo

Physical location 50 DisplayString (SIZE(0..255)) strEqualTo

Contact person name 51 DisplayString (SIZE(0..255)) strEqualTo

Authentication flavors 60 SET OF AuthenticationFlavor setIntDoesContain

9.3. [Client] Functional Unit
Capability Attribute Name ID Data Type Compare Function ID

User ID 1000 UserID strEqualTo

Salutation Architecture Specification V2.0c Part-2

265 06/01//99

9.4. Document Systems

9.4.1. [Print] Functional Unit

9.4.1.1. Capability and Command Attribute

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute
(default6)

Private/
Job

Attribute

personalityProtocol 10000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportedCommand 10001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 10002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

spoolStorage 10003 N/A SpoolStorage
(boolEqualTo)

No No/No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

10004 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

documentFormat 10010 DataFormat SET OF DataFormat
(setIntDoesContain)

No No/No

imageCompAlgorithm 10011 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No/No

imageByteFillOrder 10012 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No/No

imageResolution 10013 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No/No

printPaperSize 10020 PaperSize SET OF PaperSize
(setIntDoesContain)

Yes No/No

printResolution 10021 ImageResolution SET OF ImageResolution
(setIntDoesContain)

Yes No/No

printPaperDirection 10022 PaperDirection SET OF PaperDirection
(setIntDoesContain)

Yes No/No

printCopyCount 10023 INTEGER INTEGER -- max value
(intGreaterThanOrEqualTo)

No
(1)

No/No

printPaperInputSelect 10024 PrintPaperInputSelect SET OF
PrintPaperInputSelect
(setIntDoesContain)

Yes No/No

printPaperOutputSelect 10025 PrintPaperOutputSelect SET OF
PrintPaperOutputSelect
(setIntDoesContain)

Yes No/No

6 Implementation default values to be referred to when neither command parameter nor Private Attribute value is set.

Salutation Architecture Specification V2.0c Part-2

266 06/01//99

printOutputBinSelect 10026 PrintOutputBinSelect PrintOutputBinSelect
—maximum bin#
(intGreaterThanOrEqualTo)

Yes No/No

printDuplexMode 10027 PrintDuplexMode SET OF
PrintDuplexModeSelect
(setIntDoesContain)

Yes No/No

maximumBindingMargin 10028 INTEGER INTEGER -- max value
(intGreaterThanOrEqualTo)

Yes No/No

printFaceUpMode 10029 PrintFaceUpMode SET OF PrintFaceUpMode
(setIntDoesContain)

Yes No/No

printStaplingSelect 10030 PrintStaplingSelect SET OF
PrintStaplingSelec(setIntDoes
Contain)

Yes No/No

printPriority 10040 SimpleJobPriority SET OF SimpleJobPriority
(setIntDoesContain)

Yes No/Yes

modeOfDataTransfer7 10041 DataTransferMode SET OF DataTransferMode
(setIntDoesContain)

Yes No/No

dataLocationScheme 10042 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No/No

dataTransferTimeOutSettabl
e

10043 N/A BOOLEAN
(boolEqualTo)

No No/No

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

10044 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
-- Global attribute indicates the
-- default length. If the global
-- attribute value is zero, the
-- default length is not fixed or
-- unknown.
-- If the private attribute value
is
-- set to zero, the FU should
-- wait as long as possible.
-- However, use of zero should
-- be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes/No
(No, if the
previous

attribute is
FALSE)

7 When “spoolStorage” = FALSE, only “delayed” mode is allowed for this attribute.

Salutation Architecture Specification V2.0c Part-2

267 06/01//99

9.4.1.2. Dynamic Status Parameter

Dynamic Status Parameter Query Event ID Description

PrinterOperationStatus Yes Yes 10000 status of printing equipment.

PrinterErrorDetail Yes No 10001 detail error information of equipment’s.

FreeStorageSize Yes No 10002 available storage size.

PrinterPaperInputTray Yes No 10003 status of paper size and direction in each input
tray.

ListExcerptPrintJob Yes Yes 10004 lists a excerpt from print job descriptions

Salutation Architecture Specification V2.0c Part-2

268 06/01//99

9.4.2. [DOC Storage] Functional Unit

9.4.2.1. Capability and Command Attribute

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private
Attribute

personalityProtocol 11000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No

supportedCommand 11001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No

dynamicStatusId 11002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No

readWriteCapability 11003 AccessMode SET OF AccessMode
(setIntDoesContain)

No No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

11004 N/A INTEGER
(intGreaterThanOrEqualTo)

No No

typeOfContent 11009 DataContent SET OF DataContent
(setIntDoesContain)

No No

modeOfStore 11010 DataStoreMode SET OF DataStoreMode
(setIntDoesContain)

Yes Yes

documentFormat 11011 DataFormat SET OF DataFormat
(setIntDoesContain)

No No

imageCompAlgorithm 11012 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No

imageByteFillOrder 11013 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No

imageResolution 11014 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No

dataLocationScheme 11030 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No

dataTransferTimeOutSettabl
e

11031 N/A BOOLEAN
(boolEqualTo)

No No

Salutation Architecture Specification V2.0c Part-2

269 06/01//99

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

11032 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
-- Global attribute indicates the
-- default length. If the global
-- attribute value is zero, the
-- default length is not fixed or
-- unknown.
-- If the private attribute value
is
-- set to zero, the FU should
-- wait as long as possible.
-- However, use of zero should
-- be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes
(No, if the
previous

attribute is
FALSE)

9.4.2.2. Dynamic Status Parameter

Dynamic Status Parameter Query Event ID Description

FreeStorageSize Yes No 11000 available storage size.

OperatorIntervention No Yes 11001 a warning message to operator or administrator to
request human intervention

OperatorInformation No Yes 11002 an informational message to operator or
administrator

9.4.3. [FAX Data Send] Functional Unit

9.4.3.1. Capability and Command Attribute

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private/
Job

Attribute

personalityProtocol 12000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportedCommand 12001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 12002 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

numOfCalledSubscribers 12003 N/A NumOfCalledSubscribers
-- max integer value
(intGreaterThanOrEqualTo)

No No/No

spoolStorage 12004 N/A SpoolStorage
(boolEqualTo)

No No/No

faxSendOrdering 12005 N/A
(TelephoneNumberString be
always specified when used)

FaxSendOrdering
(boolEqualTo)

No No/No

Salutation Architecture Specification V2.0c Part-2

270 06/01//99

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

12006 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

documentFormat 12010 DataFormat SET OF DataFormat
(setIntDoesContain)

No No/No

imageCompAlgorithm 12011 ImageCompAlgorithm SET OF ImageCompAlgorithm
(setIntDoesContain)

No No/No

imageByteFillOrder 12012 ByteFillOrder SET OF ByteFillOrder
(setIntDoesContain)

No No/No

imageResolution 12013 ImageResolution SET OF ImageResolution
(setIntDoesContain)

No No/No

coverSheetGen 12020 CoverSheetGen CoverSheetGen
(boolEqualTo)

Yes No/No

pageHeaderGen 12021 PageHeaderGen PageHeaderGen
(boolEqualTo)

Yes No/No

faxProtocol 12030 FAXProtocol SET OF FAXProtocol
(setIntDoesContain)

Yes No/No

requestPriority 12031 SimpleJobPriority
(normal)

SET OF SimpleJobPriority
(setIntDoesContain)

Yes No/Yes

retryCount 12032 INTEGER INTEGER
(intGreaterThanOrEqualTo)

Yes No/Yes

modeOfDataTransfer8 12035 DataTransferMode SET OF DataTransferMode
(setIntDoesContain)

Yes No/No

dataLocationScheme 12036 N/A SET OF DataLocationScheme
(setIntDoesContain)

No No/No

dataTransferTimeOutSettabl
e

12037 N/A BOOLEAN
(boolEqualTo)

No No/No

dataTransferTimeOutLength
-- length in seconds for the
FU
-- to wait for the next
message
-- during a data transfer
-- message sequence
before
-- detecting time-out
exception

12038 INTEGER
(N/A, if the previous
dataTransferTimeOutSettable
attribute is FALSE)
—Global attribute indicates the
—default length. If the global
—attribute value is zero, the
—default length is not fixed or
—unknown.
-- If the private attribute value
is
—set to zero, the FU should
—wait as long as possible.
—However, use of zero should
—be avoided.

INTEGER
(intGreaterThanOrEqualTo)
-- if 0, not fixed or unknown
-- (use of 0 should be avoided)

Yes
(No, if the
previous

attribute is
FALSE)

Yes/No
(No, if the
previous

attribute is
FALSE)

8 When “spoolStorage” = FALSE, only “delayed” mode is allowed for this attribute.

Salutation Architecture Specification V2.0c Part-2

271 06/01//99

9.4.3.2. Dynamic Status Parameter

Dynamic Status Parameter Query Event ID Description

FaxSendStatus Yes Yes 12000 status of FAX equipment at sending side.

FaxSendFreeStorageSize Yes No 12001 storage size available for spool.

FaxSendErrorStatus Yes No 12002 the detail error status information.

9.4.4. [Fax Data] Functional Unit
Refer to Part-2 Addendum.

9.5. Voice Message Systems

9.5.1. [Voice Message Storage] Functional Unit

9.5.1.1. Capability Attribute

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private/
Job

Attribute

personalityProtocol 20000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No/No

supportLevel 20001 N/A INTEGER -value should be
‘ one’ for Subset of [Voice
Message Storage] FU
(intGreaterThanOrEqualTo)

Yes No/No

supportedCommand 20002 N/A SET OF SupportedCommand
(setIntDoesContain)

No No/No

dynamicStatusId 20003 N/A SET OF DynamicStatusID
(setIntDoesContain)

No No/No

maxDuration 20020 INTEGER INTEGER - max value
(intGreaterThanOrEqualTo)

Yes No/No

maxReceiversPlay 20021 Receiver INTEGER - max number of
receivers
(intGreaterThanOrEqualTo)

Yes No/No

maxRecipientsSend 20022 Recipient INTEGER - max number of
recipients
(intGreaterThanOrEqualTo)

Yes No/No

voiceSpeed 20023 INTEGER BOOLEAN
(boolEqualTo)

No No/No

voiceVolume 20024 INTEGER BOOLEAN
(boolEqualTo)

No No/No

deliveryGrade 20025 DeliveryGrade SET OF DeliveryGrade
(setIntDoesContain)

Yes No/No

priorityLevel 20030 PriorityLevel SET OF PriorityLevel
(setIntDoesContain)

Yes No/Yes

Salutation Architecture Specification V2.0c Part-2

272 06/01//99

copyRecipients 20040 Recipient BOOLEAN
(boolEqualTo)

No No/No

blindCopyRecipients 20041 Recipient BOOLEAN
(boolEqualTo)

No No/No

deferredDeliveryTime 20042 UTCTime BOOLEAN
(boolEqualTo)

No No/No

subject 20043 DisplayString BOOLEAN
(boolEqualTo)

No No/No

maxSubjectLength 20044 N/A INTEGER- max length of
subject
(intGreaterThanOrEqualTo)

Yes No/No

synthesize 20050 N/A BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceSpeed 20051 INTEGER BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceVolume 20052 INTEGER BOOLEAN
(boolEqualTo)

No No/No

synthesizeVoiceType 20053 INTEGER SET OF VoiceType
(setIntDoesContain)

Yes No/No

synthesizeTextLanguage 20054 TextLanguage SET OF TextLanguage
(setIntDoesContain)

Yes No/No

encoding 20060 Encoding SET OF Encoding
(setIntDoesContain)

Yes No/No

minimumCheckInterval
-- the minimum allowed
-- value to be set in the
-- checkInterval parameter
-- of a SubscribeEvent
-- command

20070 N/A INTEGER
(intGreaterThanOrEqualTo)

No No/No

NOTE: [Voice Message Storage] FU defines a standard range (0 to 10, with 0 being the lowest
and 10 being the highest) for voiceSpeed, voiceVolume and synthesizeVoiceSpeed. A user can
specify any value in this range for the parameters corresponding to these attributes in [Voice
Message Storage] FU commands.

9.5.1.2. Dynamic Status Parameter
Dynamic Status Parameter Query Event ID Description

PlayVMStatus Yes Yes 20000 Status of play voice message

Salutation Architecture Specification V2.0c Part-2

273 06/01//99

9.6. Personal Information Systems

9.6.1. [Address Book] Functional Unit

9.6.1.1. Capability Attribute

Attribute Name ID Data Type
as Command Attribute

Data Type
as Capability Attribute
(Compare Function ID)

Global
Attribute

Private
Attribute

personalityProtocol 30000 N/A SET OF PersonalityProtocol
(setIntIntersect)

No No

supportedCommand 30001 N/A SET OF SupportedCommand
(setIntDoesContain)

No No

exchangeDataFormatSuppo
rt

30010 ExchangeDataFormat Set OF ExchangeDataFormat
(setIntDoesContain)

No No

characterSetSupport 30011 CharSetID SET OF CharSetID
(setIntDoesContain)

No No

searchSupport 30012 N/A SearchSupport
(boolEqualTo)

No No

sortSupport 30013 N/A SortSupport
(boolEqualTo)

No No

Salutation Architecture Specification V2.0c Part-2

274 06/01//99

10. Basic Encoding Rule (BER)
The encoding of protocol data unit follows the "specification of basic encoding rules for abstract
syntax notation one (ASN.1)" as defined by ISO 8825.

Salutation Architecture Specification V2.0c Part-2

275 06/01//99

11. References
�� ISO 8824 Information processing systems - Open systems Interconnection - Specification of

Abstract Syntax Notation One (ASN.1)

�� ISO 8825 Information processing systems - Open systems Interconnection - Specification of
basic encoding rules for Abstract Syntax Notation One (ASN.1)

�� Sun Microsystems, “RPC: Remote Procedure Call Protocol Specification Version 2”, RFC-
1057, June 1988

�� Rose & McCloghrie, “Structure and Identification of Management Information for TCP/IP-
based Internets”, RFC-1155, May 1990

�� Case, Fedor, Schoffstall, & Davin, “A Simple Network Management Protocol (SNMP)”, RFC-
1157, May 1990

�� SNMP Working Group, “Management Information Base for Network Management of TCP/IP-
based internets: MIB-II”, RFC-1213, March 1991

�� Berners-Lee, Masinter & McCahill, “Uniform Resource Locators (URL)”, RFC-1738, December
1994

�� versit Consortium, “vCard The Electronic Business Card Version 2.1”, September 18,1996

